Analytical Instrumentation & Environmental Monitoring


Tuneable diode laser spectroscopy

July 2010 Analytical Instrumentation & Environmental Monitoring

According to a 2005 government report, the industrial and mining sectors account for 47% of total end user energy demand in South Africa. Energy remains the second leading cost pressure (behind raw materials) currently affecting most manufacturers. Some of the biggest culprits are incinerators, crackers, process heaters, and other energy intensive combustion-based equipment.

The harsh operating conditions associated with combustion analysis applications can eat up a sensor in no time, resulting in inaccurate and unreliable measurements. This can make it nearly impossible to control these processes adequately. However, new analysis techniques, such as tuneable diode laser spectroscopy (TDLS), can improve efficiency, maximise throughput, reduce emissions and improve safety in combustion analysis applications.

Reduce energy consumption while improving throughput

Most energy intensive operations, such as those found in a refinery or chemical plant, experience considerable variability in energy consumption due to changing operating conditions, equipment degradation, fluctuating market conditions, and inefficient control strategies. As a result, plants typically consume more energy than necessary, yet are unable to improve efficiency due to the inability to collect and analyse real-time performance data. Frequently, the goals of optimising efficiency and maximising throughput are at odds with the need to reduce emissions and ensure plant and personnel safety. Effective energy management is essential for a ‘triple bottom line’ business strategy that addresses social, economic, and environmental concerns. TDLS can contribute to such a strategy by helping increase throughput and reduce energy costs, while supporting safe and environmentally responsible operations.

Advanced process control (APC) systems require sensitive and accurate process measurements in real-time, or near-real-time. APC reduces process variability and inefficiency, improves product quality, and provides for more stable operations. With few exceptions, current process analytical techniques lack the speed, accuracy and sensitivity to provide reliable measurements for APC. On-line optimisation goes beyond advanced control to optimise a process based on an economic objective function.

This is becoming more important in applications where profitability depends upon improving quality, while maximising material utilisation and minimising energy usage.

Historically, obtaining reliable quality measurements in time to impact control has been an issue in combustion control applications. The current best practice utilises a Zirconia sensor for point measurement of oxygen. In applications requiring multiple measurements, point measurement cannot provide a representative sample, making it both error prone and potentially dangerous. Process oxygen measurement requires samples to be extracted and then transported to an analyser for conditioning and analysis. This slows response time, adds cost, and degrades measurement accuracy.

TDLS in combustion analysis

Inefficient combustion can be attributed to the air/fuel ratio. Excess air results in loss of efficiency and increased NOx emissions, while too little air is dangerous. Carbon monoxide measurement provides an indication of fuel-rich conditions, while oxygen measurement indicates air-rich conditions. The optimum control point is the lowest possible excess air value that does not cause the system to enter into an unsafe condition or violate emissions limits.

Tunable diode laser technology is an innovative measurement technique that utilises semiconductor lasers to detect a variety of gases at trace levels in the part-per-million (ppm) or part-per-billion (ppb) range. Tuneable lasers, which enable miniaturisation of transmission and receiving units, provide highly sensitive, quantitative measurements with fast response times without the need for recalibration. The lasers can be tuned to detect specific constituents independent of process gas concentrations.

TDLS enables high performance measurements in real-time, even in challenging process environments. Exact performance specifications may vary somewhat according to supplier; however, the benefits are universal.

To date, the most widely reported application of TDLS has been for combustion control. Energy can be the largest component of a manufacturer’s cost structure with costs expected to trend upward over the long term. A willingness to apply state-of-the-art technologies can have a significant impact on the success of energy management programs. Technologies, such as TDLS, that can improve performance and provide quick ROI can have a significant impact on the bottom line.

For more information contact Larry O’Brien, ARC Advisory Group, (+1) 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Analysers for use in high ambient temperature environments
Analytical Instrumentation & Environmental Monitoring
The 993X series of analysers from Ametek Process Industries are now IECEx Zone 2 certified for use in locations with up to 60°C ambient temperature. Built with IP66-rated enclosures and using an integrated cooling system, they can be installed outdoors or in minimally temperature-controlled enclosures, reducing complexity while lowering capital and operating costs.

Read more...
The art of precision measurement
Analytical Instrumentation & Environmental Monitoring
To achieve precise, reliable measurement results when scanning component parts, use is frequently made of reference points. In optical measuring processes, these permit the referencing of three-dimensional objects during the digitisation.

Read more...
Vibration test system supports international space industry
TANDM Technologies Analytical Instrumentation & Environmental Monitoring
Dragonfly Aerospace has launched EOS SAT-1, one of seven satellites in the world’s first agricultural-focused constellation. With optimisation of resources being a key component for Dragonfly, it called on TANDM to assist in creating and heavily expanding its environmental testing capabilities by providing a vibration test system that allowed it to perform in-house vibration and shock testing.

Read more...
Sensor technology for brewing
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
Brewing is a delicate balance, blending tradition with innovation. Now, modern sensor technology is stepping in to perfect the art of fermentation.

Read more...
Loesche gets dirty
Loesche South Africa Analytical Instrumentation & Environmental Monitoring
The world’s attention is on environmental sustainability, and the pressure on countries and companies to demonstrate their commitment to preserving the environment and preventing climate change is at an all-time high. As we confront a multitude of environmental and social challenges, managing waste and maximising landfill diversion can play a key role.

Read more...
Water systems with energy savings and sustainability
Labotec Analytical Instrumentation & Environmental Monitoring
ELGA Veolia has relaunched its award-winning PURELAB flex range, with features to reduce the system’s environmental footprint and incorporate some of the latest innovations in water purification technologies. The ecological improvements integrated into the flex range have been made to reduce water and power consumption.

Read more...
Keeping an eye on invisible radiation
Omniflex Remote Monitoring Specialists Analytical Instrumentation & Environmental Monitoring
At its peak in 1994, the energy generation capacity of the UK’s nuclear power stations was 12,7 GW across 16 plants. In 2024, the capacity has fallen to around 5 GW, and the number of stations is down to nine. However, this is far from the end of the story as spent nuclear fuel remains radioactive for centuries, and requires rigorous safety processes to safeguard against leaks.

Read more...
Technology for water sustainability
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The sustainability of surface water is critical for South Africa’s economic development, social well-being and environmental health. Endress+Hauser has a full range of liquid analysis sensors and transmitters to measure important parameters and has an excellent global track record in water and wastewater process plants and various surface and industrial water monitoring sites.

Read more...
Reducing water consumption in the cement industry
Loesche South Africa Analytical Instrumentation & Environmental Monitoring
Water is a finite and irreplaceable resource, fundamental to life on earth. LOESCHE’s vision is to enable its customers to produce high-quality cement, without any water consumption.

Read more...
Ensuring occupational health and safety in mining
Analytical Instrumentation & Environmental Monitoring
Probe Integrated Mining Technologies (Probe IMT) has partnered with M3SH Technology to offer state-of-the-art environmental monitoring solutions that address these dual requirements.

Read more...