IT in Manufacturing


Preventing unplanned downtime: the secure control system

July 2008 IT in Manufacturing

One aspect of unplanned downtime that is coming into focus is that caused by breaches in control system security. The problem is best addressed by ensuring physical site security is adequate, correct system security procedures are in place and control system operators and engineers are properly trained.

Modern digital automation systems, for reasons of lower cost and interoperability with other plant systems, are now using commercial off-the-shelf (COTS) hardware and software components that make these systems more open to attack by viruses, hackers and worms. Downtime can be caused maliciously or inadvertently by the introduction of viruses. Hackers can cause downtime or if they were so inclined could take control of the plant, causing equipment damage or more severe consequences.

Control system manufacturers must therefore build security into their systems but are often unwilling to discuss exactly what they build in and how it works as this would defeat the objective.

Security can be approached in two ways, reactive and proactive. Reactive security merely ensures that should an attack take place the system will deal with it and prevent it causing a problem. Reactive measures include hardening a controller to survive an attack, the use of anti-virus software and intrusion detection systems. Proactive security, on the other hand, tries to remove the possibility of there being an attack in the first place. Proactive security entails such things as correct installation of the network, the use of firewall devices to prevent access, preventing physical access to equipment and ensuring the proper security procedures are in place and are followed.

Proactive measures

To ensure any control network remains secure from attack, whether deliberate or not, there are several elements that must be in place. The first of these elements is ensuring the control network is isolated from the plant LAN or any other open LAN. An easy way to achieve isolation would be to make no physical connection to the control network at all. However in these days of asset optimisation, the control system vendors are making it even easier for their systems to communicate with other systems such as asset management systems (AMS), computerised maintenance management systems (CMMS) and enterprise resource planning (ERP) systems. Without a connection to the plant LAN the benefits that these capabilities offer are lost.

Ideally a control LAN would be configured as a dedicated, isolated network with very defined and regulated methods of connection(s) to other LANs. A preferred connection method is to create what is called a demilitarised zone (DMZ) by employing a router/firewall device between the LANs and in addition making all external connections through a workstation on the control LAN (see Figure 1). In this configuration the workstation acts as a neutral zone between the control network and the plant network. It prevents plant users from getting direct access to the devices on the control network.

Figure 1
Figure 1

Another element that contributes to overall system security is physical access prevention. Good security practice dictates that controllers and network equipment are installed in locked or sealed enclosures that prevent easy access by unauthorised personnel. This is to prevent access by unplugging a network device and using this cable for access, or simply plugging into an unused port on a network device. Wherever possible unused network ports should be disabled in the configuration of the device and network cabling should be protected from easy access.

The most reported method of introducing a virus has been users introducing them by using infected media to copy files to a workstation. To prevent this, drives should be disabled or unplugged to prevent users from introducing viruses and other malware programs into the system. Similarly, USB ports (except those actually in use) should be physically disconnected so they cannot be accessed by unauthorised users who may be tempted to transfer data using a USB memory device. In addition, since most virus and malware is spread via e-mails and Web access, control system workstations should never provide e-mail access or have the ability to make a direct connection to the World Wide Web outside the plant. If it is required for operators to access e-mail or the Internet then separate computers, not connected to the control system LAN, should be used for these applications.

Access to the control room should be controlled at least to the extent that the personnel in the room are policing access to the workstations. In the case of remote consoles located away from the control room, procedures should dictate that operators log out or lock consoles when not actively in use. Remote workstations themselves should be setup so that they automatically lock the screen after a very short period of inactivity. Typically, a two minute delay would be recommended.

User access security is probably the most important but mismanaged aspect of security. It is important to properly manage the system users if any level of security is to be achieved. Access should only be granted to those individuals who perform system functions and the user list must be actively managed to delete users who no longer should have access to the system. For users who require only process data access, provisions should be made to locate the information on a separate data server located away from the control system functions in a secure process LAN acting as a DMZ (see Figure 2). In addition there should be role-based security allowing users access only to those elements of the control system that are necessary for them to perform their function.

Figure 2
Figure 2

There has been a lot mentioned about firewalls, as a firewall examines all traffic routed between the control network and the plant LAN to ensure that it meets certain criteria. If it does, the data is routed between the networks, otherwise it is stopped. Firewalls must be configured for the application. Firewalls can perform address and protocol filtering to ensure that only certain computers can access the system, via certain port numbers or that certain protocols such as HTTP are restricted from accessing the network. Most control systems will use specific ports for communications and all other ports should be closed or disabled to prevent connections being made through other open ports.

The above proactive measures should prevent unauthorised access to your control network and the introduction of potentially harmful viruses and malware; however they do depend on adherence to procedures. In order for these measures to remain effective they should be continually and thoroughly policed and amended as necessary. Should these procedures fail then there is still the potential for problems, this is where reactive security measures should be adopted.

Reactive measures

Anti-virus software screens files moving in and out of the network to ensure that there are no viruses present. The most common delivery method for viruses is via e-mail attachments, hence the stipulation that control system workstations should not be configured to accept e-mails. Another common means of delivering viruses is in a document downloaded from the Internet. Anti virus software will detect viruses, no matter how they are brought in. This is dependent on the anti-virus software being kept up-to-date as new viruses are being developed all the time.

Intrusion detection systems will monitor all access attempts and allow users to detect inappropriate, incorrect, or anomalous activity that takes place on a network. An intrusion detection system requires frequent review of the communication logs to discover if attempts have been made to hack into the system or if users are making frequent attempts to access areas where they are not normally permitted. Intrusion detection activities can be labour intensive and are best deployed in high security situations where the cost to monitor can be justified.

Summation

Basic system security is relatively straightforward and most elements can be implemented by a plant or process engineer. The proactive elements include physical security of system hardware, network security using routers and firewall devices in a DMZ configuration and enforcing user access. Reactive security elements include the monitoring of access logs and maintaining anti-virus software. These basic measures can go a long way to protecting control systems from hacking and viruses.

For more information contact Widad Haddad, Emerson Process Management Dubai, +971 4 883 5235, [email protected], www.emersonprocess.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Unlocking mining efficiency with advanced processing control
IT in Manufacturing
ABB’s Advanced Process Control system, powered by its Expert Optimizer platform, is emerging as a key enabler of smarter, more efficient mining operations.

Read more...
Open control technology reduces energy consumption and carbon footprint.
Beckhoff Automation IT in Manufacturing
The Swedish company Airwatergreen AB is breaking new ground in the dehumidification of air in industrial buildings and warehouses. PC-based control from Beckhoff regulates the innovative process.

Read more...
Harnessing AI and satellite imagery to estimate water levels in dams
IT in Manufacturing
Farmers and water managers often struggle to accurately estimate and monitor the available water in dams. To address the challenge, International Water Management Institute researchers have worked with Digital Earth Africa to create an innovation that uses satellite images and AI to get timely and accurate dam volume measurements.

Read more...
Why industry should enter the world of operator training simulators
Schneider Electric South Africa IT in Manufacturing
System-agnostic operator training simulator (OTS) software is a somewhat unsung hero of industry that trains plant operators in a virtual world that mirrors real-world operations. The benefits are multiple.

Read more...
Track busway for scalable data centre power delivery
IT in Manufacturing
The latest generation Legrand Data Centre Track Busway technology addresses the operational pressures facing today’s high-density, AI-intensive computing environments and is being well received by data centre facilities around the world.

Read more...
Poor heat management in data centre design
IT in Manufacturing
Designing a world-class data centre goes beyond simply keeping servers on during load shedding; it is about ensuring they run efficiently, reliably, and within the precise environmental conditions they were built and designed for.

Read more...
It’s time to fight AI with AI in the battle for cyber resilience
IT in Manufacturing
Cybercrime is evolving rapidly, and the nature of cyber threats has shifted dramatically. Attacks are now increasingly powered by AI, accelerating their speed, scale and sophistication. Cybersecurity needs to become part of business-critical strategy, powered by AI to match attackers’ speed with smarter, faster and more adaptive defences.

Read more...
Why AI sustainability must be a boardroom priority
IT in Manufacturing
As South African companies race to harness artificial intelligence for innovation and growth, few are asking the most critical question - the environmental cost.

Read more...
RS South Africa shines spotlight on MRO procurement
RS South Africa IT in Manufacturing
RS South Africa has highlighted the growing pressures faced by procurement professionals responsible for maintenance, repair and operations supplies across the country’s vital economic sectors.

Read more...
Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved