Electrical Power & Protection


Locating battery ground faults without sectionalising

November 2000 Electrical Power & Protection

Power surgers and lightning can cause power outages. The back-up systems that can take over and keep power available need to be in good order. Here is something relatively new in the maintenance and repair of battery back-up systems.

The main objective of a battery system is to provide standby and emergency power to operate industrial, consumer, commercial or protective devices connected to it. These devices include emergency lighting, uninterruptible power supplies, continuous process systems, operating controls, switchgear components and protective relays. It is essential that these devices are in proper operating condition in emergency situations because failure of a battery system can result in operational failure of the devices.

It often happens that a battery system develops grounds within the system. When both the positive and negative terminals are partially or completely grounded, a short circuit is formed across the battery. This can cause the protective device to fail to operate when needed.

Current test methods

Although utilities and industrial complexes have gone to great lengths to find grounds within their battery systems, locating these battery grounds proves very elusive and time-consuming. The current ground-fault location method involves sectionalising or interruption of DC branches to isolate the ground fault. Unfortunately sectionalising disables the system protection and has been known to cause inadvertent line and generator tripping. Therefore, many utilities have banned sectionalising.

Measuring resistance to ground for entire negative bus (position A) and the resistance to ground contributed by one circuit - without disconnecting anything
Measuring resistance to ground for entire negative bus (position A) and the resistance to ground contributed by one circuit - without disconnecting anything

New test method

Recently a new test method was developed. The AC injection method measures fault resistance in the battery system without sectionalising the DC system. By reducing the fault-locating time from days to hours the system is protected at all times.

The AC injection method measures single or multiple ground faults by injecting a low-frequency AC voltage between the station ground and the battery system. The resulting current is then measured by using a clamp-on sensing current transformer. The resistance value can also be calculated using the in-phase component of the circulating current, thus rejecting the effect of capacitive loads.

Therefore, if the signal is injected at the battery terminal and the clamp-on CT is connected to the outgoing lead, the instrument will measure the total ground resistance present on the battery system. If the CT is clamped on a feeder, then the instrument will measure the ground resistance on that feeder.

After injection of a low-frequency AC waveform, a resistive fault on a branch of the battery system will be indicated by a low-resistance value. For example, if the total resistance on a battery system showed 10 kW, this would indicate a resistive fault on the battery system. The resistive fault can be located by clamping onto each individual circuit, looking for one exhibiting a resistance value of 10 kW is found.

This method can be adapted easily to the location of multiple faults by using the theory of parallel paths. For example, if the total system resistance indicates 100 W and an individual branch indicates 10 kW resistive fault, the user would know that the system has a second fault because the total system resistance and the branch resistance do not match.

AVO's multi-amp, battery ground fault locator

The technician can simplify his life by investing in AVO International's multi-amp battery ground fault locator. It is lightweight and portable, reads directly in resistance and can operate on live battery systems. Its resistance range is from 1 W to 100 kW and it works on battery systems up to 260 V nominal with a maximum ripple current of 0,5 A a.c. and maximum DC bias current of 20 A.

The battery ground fault locator is user-friendly and virtually anyone can be trained to use the instrument. The unit can substantially reduce the amount of time needed to locate battery ground faults.

Spescom MeasureGraph, a subsidiary of JSE-listed Spescom Limited and a leading supplier of test and measurement equipment, is the sole local distributor of the AVO range of products.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The climate change reality in South Africa: An engineer’s call to action
Electrical Power & Protection
This year’s World Engineering Day on 4 March was a powerful reminder of the critical role engineers play in driving progress toward the sustainable development goals.

Read more...
Empowering Africa’s renewable energy future
Electrical Power & Protection
As a global leader in renewable energy technology, SUNGROW has pioneered sustainable power solutions for over 28 years. At the recent Africa Energy Indaba 2025, SUNGROW showcased its advanced energy solutions designed to meet the diverse needs of the African continent.

Read more...
The role of electromechanical solutions in supporting Africa’s industrial growth
Electrical Power & Protection
Africa’s industries are transforming rapidly. Fuelled by a huge demand for energy connectivity, better infrastructure, increased manufacturing and responsible resource management, electromechanical solutions are key to shaping this growth, allowing industries to scale up their operations efficiently and sustainably.

Read more...
Empowering South Africa’s IPPs for a renewable future
Electrical Power & Protection
Many crucial parts of the economy of the future will be hugely energy intensive, foremost amongst which will be electrified transport and the large data processing required by automation and AI. Successful economies will be those that can ensure businesses and investors have access to a stable supply of low-cost renewable energy. South Africa has the opportunity to become a global leader in this regard.

Read more...
Sustainable mining operations escalate as demand for critical materials to double
Electrical Power & Protection
The mining sector is at the forefront of the energy transition due to its role in extracting essential materials and minerals necessary for green technologies. As demand for renewable energy, electric vehicles and other sustainable technologies increases exponentially, so will the demand for these necessary materials.

Read more...
Monitoring partial discharge on medium voltage switchgear
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric South Africa has launched its EcoStruxure Service Plan (ESP) in the Anglophone African region for medium voltage (MV) switchgear

Read more...
Raptor switches
Phoenix Contact Electrical Power & Protection
The Phoenix Contact Raptor switches enable reliable and safe operation in extreme ambient conditions. The managed switch portfolio meets the stringent requirements of IEC 61850-3 and IEEE 1613 standards and is ideal for critical infrastructure and power supply applications.

Read more...
Electrical safety warning indicators
Electrical Power & Protection
Remlive electrical safety warning indicators have been keeping the workplace safe for more than 25 years.

Read more...
Self-contained standalone lightning warning system
Senseca Electrical Power & Protection
The BTD-200 lightning warning system from Biral (UK) is a complete detection and warning system. Its highly specialised aviation grade lightning detection technology delivers the warning as soon as lightning is detected and before the first strike.

Read more...
Half brick second generation converter
Vepac Electronics Electrical Power & Protection
The Supreme series half brick second generation converter from Vepac is composed of isolated, board-mountable, fixed switching frequency DC-DC converters that use synchronous rectification to achieve extremely high power conversion efficiency.

Read more...