Electrical Power & Protection


Signal isolators and loop interface 101 - Part 1

November 2006 Electrical Power & Protection

The ubiquitous problem with every plant is the interface of plant measurement signals to the monitoring and control systems. Unfortunately for many plants this is the single biggest area of weakness and with the success of the organisation depending on these measurements, more attention should be afforded to the integrity of signal conditioning systems.

The problems faced by these systems are numerous:

* Aged cabling.

* Long cable runs.

* Earth loops.

* Interference from other plant devices.

* Floating earth potentials.

* Isolation of signals from PLC, SCADA and DCS.

* Legacy instrumentation.

* Isolate grounded equipment.

* Adding instruments to existing loops.

* Poor design.

* Converting current loops into accurate 1-5 V.

* Protecting against open circuit loops.

* Load dependency calibration.

A compendium of common problems is addressed using loop powered isolators (LPIs) in this two-part article.

In Part 1 four applications will be looked at and in Part 2 in next month's issue, a further six applications will be dealt with.

Application 1: Using the LPI to isolate a powered 4-20 mA transmitter output from a resistive load

This is the basic circuit for inserting a loop powered isolator into a current loop. The LPI can simply be 'cut' into any existing current loop to isolate the current transmitter from the load.

Application 1
Application 1

Note: The 'IN' side of the LPI is always connected to the side of the loop supplying the loop power.

The LPI will consume less than 3 V of the available loop voltage. This is equivalent to inserting less 150 Ω of additional resistance into the current loop.

To determine the maximum loop resistance that you can tolerate in your cabling, apply the following formula:

RMAX = RT - RL - 150

where:

RMAX is the maximum resistance in the loop without causing measurement error (in Ω).

RT is the maximum load resistance that the current transmitter can drive (in Ω).

RL is the total resistance of all loads in the loop (excluding the LPI) (in Ω).

For reliable operation over the long term, you should design for less initial cable resistance than this maximum value. This provides a safety factor to account for increase in resistance of terminations and wiring with age or weathering.

A sensible value to use for this safety factor would be 100 Ω (equal to 2 V at 20 mA).

Application 2: Using the LPI to isolate a field-mounted 4-20 mA two-wire transmitter from a PLC, RTU or DCS

This is the basic circuit for isolating a field-mounted two-wire transmitter from the control circuitry using an LPI. The LPI can simply be 'cut' into any existing two-wire current loop to isolate the transmitter from the panel power supply.

Application 2
Application 2

NOTE: The 'IN' side of the LPI is always connected to the side of the loop supplying the loop power, so in this application the two-wire transmitter is connected to the OUT terminals of the LPI.

Because of the 2 mm² wire size capability of the LPI terminals, the LPI can also act as the field interface terminals, saving you the extra termination and wiring cost. For multiple loops where space is a concern, use the LPD dual module. (See Applications 7, 8 and 9 in Part 2 of this article).

The LPI will consume less than 3 V of the available loop voltage. This is equivalent to inserting less 150 Ω of additional resistance into the current loop.

To determine the maximum loop resistance that you can tolerate in your cabling, apply the following formula:

where:

RMAX is the maximum resistance in the loop without causing measurement error (in Ω).

VSmin is the minimum voltage of the power supply used to drive the loop (in V).

VTmin is the minimum voltage required by the two-wire transmitter for operation (in V).

RL is the total resistance of all loads in the loop (excluding the LPI) (in Ω).

For reliable operation over the long term, you should design for less initial cable resistance than this maximum value. This provides a safety factor to account for increase in resistance of terminations and wiring with age or weathering.

A sensible value to use for this safety factor would be 100 Ω (equal to 2 V at 20 mA).

Application 3: Using the LPI's internal resistor with a two-wire transmitter to provide 1-5 V to your PLC/RTU/DCS

There are many cases when using 4-20 mA inputs to your PLC or RTU or DCS is inconvenient. For example:

1. Your analog input does not support 4-20 mA, and mounting an external resistor is inconvenient.

2. Your analog input has plug in terminals, and you do not want to lose power to your field transmitter or disrupt the loop if the terminal block is unplugged.

Application 3
Application 3

In these cases you can use the internal resistor on the IN side of the LPI to conveniently convert your 4-20 mA signal into a 1-5 V signal. For the most accurate result, ensure that the 0 V reference of the LPI (terminal 8), and the 0 V reference of your analog input are referenced to the same point. Note: The 'IN' side of the LPI is always connected to the side of the loop supplying the loop power, so in this application the two-wire transmitter is connected to the OUT terminals of the LPI.Because of the 2 mm² wire size capability of the LPI terminals, the LPI can also act as the field interface terminals, saving you the extra termination and wiring cost.

The LPI will consume less than 3 V of the available loop voltage. This is equivalent to inserting less 150 Ω of additional resistance into the current loop.

To determine the maximum loop resistance that you can tolerate in your cabling in this application, apply the following formula:

where:

RMAX is the maximum resistance in the loop without causing measurement error (in Ω).

VSmin is the minimum voltage of the power supply used to drive the loop (in V).

VTmin is the minimum voltage required by the two-wire transmitter for operation (in V).

For reliable operation over the long term, you should design for less initial cable resistance than this maximum value. This provides a safety factor to account for increase in resistance of terminations and wiring with age or weathering.

A sensible value to use for this safety factor would be 100 Ω (equal to 2 V at 20 mA).

Application 4: Using the LPI's internal resistor with a four-wire transmitter to provide 1-5 V to your PLC/RTU/DCS

There are many cases when using 4-20 mA inputs to your PLC or RTU or DCS is inconvenient. For example:

1. Your analog input does not support 4-20 mA, and mounting an external resistor to convert the signal to 1-5 V is inconvenient.

2. Your analog input has plug in terminals, and you do not want to lose power to your field transmitter or disrupt the loop if the terminals are unplugged.

Application 4
Application 4

In these cases you can use the internal resistor on the OUT side of the LPI to conveniently convert your 4-20 mA signal into a 1-5 V signal.

For the most accurate result, ensure that the 0V reference to the LPI (terminal 5), and the 0V reference of your analog input are referenced to the same point.

Note: The 'IN' side of the LPI is always connected to the side of the loop supplying the loop power, so in this application the four-wire transmitter is connected to the IN terminals of the LPI.

Because of the 2 mm² wire size capability of the LPI terminals, the LPI can also act as the field interface terminals, saving you the extra termination and wiring cost.

The LPI will consume less than 8 V of the available loop voltage. This is equivalent to inserting less than 400 Ω of resistance into the current loop.

To determine the maximum loop resistance that you can tolerate in your cabling in this application, apply the following formula:

RMAX = RT - 400

where:

RMAX is the maximum resistance in the loop without causing measurement error (in Ω).

RT is the maximum load resistance that the current transmitter can drive (in Ω).

For reliable operation over the long term, you should design for less initial cable resistance than this maximum value. This provides a safety factor to account for increase in resistance of terminations and wiring with age or weathering.

A sensible value to use for this safety factor would be 100 Ω (equal to 2 V at 20 mA).

For more information contact Ian Loudon, OmnIflex, +27 (0) 31 207 7466.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Schneider Electric accelerates adoption of SF6-free switchgear
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric is driving the transition to sustainable medium-voltage solutions across East Africa with its award-winning SM AirSeT pure-air switchgear.

Read more...
Critical power distribution for modern infrastructure
Electrical Power & Protection
Legrand has expanded its critical power portfolio with integrated solutions designed for reliable, efficient, safe and flexible power distribution in many applications, including data centres and industrial sites.

Read more...
How to use a voltage tester
Comtest Electrical Power & Protection
Voltage testers are valuable tools for professionals who work with electrical systems.This application note will guide you on how to use a voltage tester effectively, and which Fluke voltage testers can assist in a variety of settings.

Read more...
Film capacitors for noise suppression
Electrical Power & Protection
Würth Elektronik has expanded its portfolio of components for the mains input. The new series of WCAP-FTY2 film capacitors is optimised for use in noise suppression and complies with X1 or Y2 safety classes in accordance with IEC 60384-14.

Read more...
Emissions pressures are not just hot air
Electrical Power & Protection
Dennis Williams, commercial director of AES says that the South African government aims to push towards global standards in emissions, but it might be difficult for our industries to carry the financial burden. This is where AES fits in.

Read more...
Remote water monitoring
Omniflex Remote Monitoring Specialists Industrial Wireless
Remote monitoring specialist, Omniflex has helped New South Wales Ports improve its ability to track water usage by installing remote monitoring to 38 water meters at its Port Kembla site, sending the data to the NSWPorts web portal.

Read more...
ABB achieves zero operational emissions
ABB South Africa Electrical Power & Protection
ABB’s factory in Oiartzun, Spain, has reached a major sustainability milestone.

Read more...
Supporting the AI boom with power architecture
Electrical Power & Protection
Hitachi Energy is supporting the 800 VDC power architecture announced by Nvidia, by developing a cleaner, more efficient way to power the next generation of AI infrastructure.

Read more...
Control and information overlay for nuclear plants
Omniflex Remote Monitoring Specialists Industrial Wireless
Radiation monitoring specialist Omniflex has supported a major UK nuclear plant operator through a critical phase of its decommissioning programme, ensuring continuous safety and security monitoring as buildings were progressively de-manned.

Read more...
Terminal blocks with Push-X technology for wiring from 0,34 mm2
Phoenix Contact Electrical Power & Protection
The Push-X product range is growing. With the new XT 1,5 terminal blocks, Phoenix Contact is extending the series to include versions for conductor cross-sections from 0,34 to 2,5 mm2.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved