Analytical Instrumentation & Environmental Monitoring


Monitoring emissions in parts per billion

January 2005 Analytical Instrumentation & Environmental Monitoring

Just as the semiconductor industry is achieving increasingly higher levels of integration, analysis technology is advancing into lower measurement ranges.

In analogy to Moore's Law of the semiconductor industry, measurement resolution for emission gas monitoring has halved at an impressive regularity of every two to three years.

Measurement data and processes

The automotive industry has reduced nitrogen oxide pollution levels by progress in engine technology. Oxidating catalytic converters (oxicat) provide further emission reductions. For larger applications, ranging from diesel engines for trucks to gas fired power plants, these methods are insufficient.

In California for example, NO emission from gas-fired plants may not exceed 5 ppm. DeNOx catalytic converters based on the SCR (selective catalytic reduction) permit the fulfilment of these requirements. Such converters rely on dosing with urea or ammonia to remove NO.

To provide the correct doses, accurate knowledge of NO, NO2 and NH3 concentrations in the exhaust gas are a prerequisite. The process relies on sensitive measurement equipment.

In the automotive industry, measurements are performed either in a laboratory test set-up or on a moving test vehicle. In a power plant, the measurement must be performed directly in the chimney flue.

Detection by resonance

Limas11 HW of the AO2000 gas analyser series detects the presence of very small concentrations of NO gas in a sample by analysing the absorption resonance of the gas to specific light frequencies.

Resonance spectroscopy is a unique approach in the field of UV photometers. While the principle may sound straightforward in theory, the practical realisation of such a set-up requires greater sophistication. Noise from such sources as impurities in the apparatus and variations in the light must be taken into account.

Light source

The light is produced in an electrodeless (EDL) source: A high frequency field generates plasma from a mixture of N2 and O2 in a quartz bulb. Excited NO is formed, which, on reverting to its ground state, emits ultra-violet radiation with the characteristic spectrum of NO (oscillation and rotation transitions) - Figure 1. Some molecules do not immediately achieve their ground state but fall to an excited state. As shall be explained later, Limas11 HW uses the radiation from this transition as reference radiation.

Figure 1
Figure 1

Resonant absorption (Figure 2)

The light beam from the EDL source (2a) is split into two beams using a semi-transparent mirror (2b). One of these beams is directly captured by the first detector (2c) and the other is directed through a cell containing the measuring gas (2d). If the measuring gas contains traces of NO, it marks its presence by absorbing some of the radiation.

Figure 2
Figure 2

On leaving the measuring cell, the beam is captured by another detector (2e). Comparison of this measurement with that of the first detector compensates for changes of the light intensity caused by the EDL light source or temperature effects of the filters. This is, however, not sufficient for achieving the required accuracy. Resonant absorption by NO cannot be distinguished from the effects of attenuation of the beam on its passage through the gas and glass, or the influence of contamination.

For an accurate indication of resonant absorption, the attenuation must be taken into account. This is where the reference radiation is used.

Reference radiation

Reference radiation is used to distinguish absorption from attenuation. It is emitted by NO in the plasma and occupies the same frequency band as the measurement radiation but is not subject to resonant absorption by NO in its ground state. It is, however, subject to the same attenuation and can be used to quantify this.

By comparing the intensity drop of the measurement radiation on passing through the measuring gas with that of the reference radiation, the effects of attenuation and absorption can be separated.

A filter-wheel is placed between the light source and the first detector (2f). Different filters permit the passage of either the total radiation (measurement plus reference radiation) or only the reference radiation.

The resonant absorption for the measurement radiation is extracted using double quotient signal processing (Figure 3). This method makes the measurement very tolerant of impurities: The measurement cell can accumulate dirt without this affecting the result of the measurement. In an extreme situation, measurement remains possible even with the cell half full of water.

Figure 3
Figure 3

Set-up of the filter wheel

A classical filter wheel is powered by a constant-speed motor. As the windows themselves are small, the light pulses are applied to the test gas during only a short part of the total measurement cycle. Limas11 HW uses a stepped motor that permits pulses to be applied during a considerably longer part of the cycle (Figure 4). This mechanism increases the signal to noise ratio by a factor of 2 to 3.

Figure 4
Figure 4

Measuring cell design

Further sensitivity is added to the measurement through the design of the measuring cell. Instead of the usual arrangement with the gas entering at one end and exiting at the other, the cell of Limas11 HW has a central inlet with outlets at the outer ends (Figure 5). The advantage of this arrangement is that soot and dirt particles collide with the wall opposite the inlet where they are adsorbed. Coating of the windows of the measurement cell by this dirt and soot is greatly reduced. This is especially important for small measurement ranges.

Figure 5
Figure 5

Safety

The cell has a gas purging arrangement. Purge gas is passed through chambers adjoining the cell windows (Figure 6). Leaks in the window gaskets or a breakage of the glass are quickly detected through monitoring of the purge gas. The purging arrangement also ensures that any leaked test gas is removed safely.

This approach uses standard components and replaces elaborate constructive measures such as separate enclosures for optics and electronics (to prevent gas from contaminating the air within the set-up and so affecting results). Flammable, corrosive or toxic gases can be safely measured with a simple set-up.

Figure 6
Figure 6

Calibration

Calibration is a simplified process performed with a quartz cell containing a measurement component, resulting in system and time cost savings. The noteworthy long-term stability of a calibration cell is shown in Figure 7.

Figure 7
Figure 7

Multicomponent measurements

The measurement set-up can easily be extended for measuring several gases simultaneously. Additional windows can be added to the filter-wheels to cover additional frequencies. For example, in a DeNOx denitrogenation process, NO, NO2 and NH3 can all be measured at the same time.

Remote maintenance via software

AnalyseIT Explorer makes all available data visible and accessible for remote maintenance on Ethernet TCP/IP networks. Maintenance outlay can be reduced and predictive maintenance raises reliability.

Applications

This analyser offers an alternative to established CLD (chemiluminescence) analysers. Major advantages in comparison to CLD analysers are:

* No ozoniser/deozoniser: less maintenance.

* No high vacuum pump: less maintenance.

* No quenching for other measuring components such as H2O or CO2: less cross-sensitivity.

Potential applications for the analyser in the automotive industry include development activities for vehicle engines, larger engines (as used in ships), catalytic converters, automotive pollution treatments and the production of test gas bottles.

Combustion plant developers can use it for developing combustion chambers, burners, combustion engineering and pollution treatments. The equipment can also be used by suppliers of DeNOx plants, gas turbines, gas-fired burners and for stack testing.

For more information contact ABB South Africa, 011 236 7616.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The importance of environmental monitoring and visibility at data centres
Legrand Analytical Instrumentation & Environmental Monitoring
Data centres are one of the most energy-intensive building types, consuming up to 50 times the energy per floor space compared to a typical commercial office building. With organisations embracing advanced technologies, data centres powering these technologies are under increasing pressure around the globe to increase capacities and improve efficiencies.

Read more...
Analysers for use in high ambient temperature environments
Analytical Instrumentation & Environmental Monitoring
The 993X series of analysers from Ametek Process Industries are now IECEx Zone 2 certified for use in locations with up to 60°C ambient temperature. Built with IP66-rated enclosures and using an integrated cooling system, they can be installed outdoors or in minimally temperature-controlled enclosures, reducing complexity while lowering capital and operating costs.

Read more...
ATEQ is adapting to evolving markets
ATEQ South Africa Analytical Instrumentation & Environmental Monitoring
ATEQ is a global company that has established itself as a world leader in leak test technologies and industrial quality control equipment. The company’s mission is to help its customers remain compliant with regulations and maintain product quality through its range of support services.

Read more...
The art of precision measurement
Analytical Instrumentation & Environmental Monitoring
To achieve precise, reliable measurement results when scanning component parts, use is frequently made of reference points. In optical measuring processes, these permit the referencing of three-dimensional objects during the digitisation.

Read more...
Vibration test system supports international space industry
TANDM Technologies Analytical Instrumentation & Environmental Monitoring
Dragonfly Aerospace has launched EOS SAT-1, one of seven satellites in the world’s first agricultural-focused constellation. With optimisation of resources being a key component for Dragonfly, it called on TANDM to assist in creating and heavily expanding its environmental testing capabilities by providing a vibration test system that allowed it to perform in-house vibration and shock testing.

Read more...
Sensor technology for brewing
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
Brewing is a delicate balance, blending tradition with innovation. Now, modern sensor technology is stepping in to perfect the art of fermentation.

Read more...
Loesche gets dirty
Loesche South Africa Analytical Instrumentation & Environmental Monitoring
The world’s attention is on environmental sustainability, and the pressure on countries and companies to demonstrate their commitment to preserving the environment and preventing climate change is at an all-time high. As we confront a multitude of environmental and social challenges, managing waste and maximising landfill diversion can play a key role.

Read more...
Water systems with energy savings and sustainability
Labotec Analytical Instrumentation & Environmental Monitoring
ELGA Veolia has relaunched its award-winning PURELAB flex range, with features to reduce the system’s environmental footprint and incorporate some of the latest innovations in water purification technologies. The ecological improvements integrated into the flex range have been made to reduce water and power consumption.

Read more...
Keeping an eye on invisible radiation
Omniflex Remote Monitoring Specialists Analytical Instrumentation & Environmental Monitoring
At its peak in 1994, the energy generation capacity of the UK’s nuclear power stations was 12,7 GW across 16 plants. In 2024, the capacity has fallen to around 5 GW, and the number of stations is down to nine. However, this is far from the end of the story as spent nuclear fuel remains radioactive for centuries, and requires rigorous safety processes to safeguard against leaks.

Read more...
Technology for water sustainability
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The sustainability of surface water is critical for South Africa’s economic development, social well-being and environmental health. Endress+Hauser has a full range of liquid analysis sensors and transmitters to measure important parameters and has an excellent global track record in water and wastewater process plants and various surface and industrial water monitoring sites.

Read more...