Pressure Measurement & Control


Pressure sensors and transducers

March 2003 Pressure Measurement & Control

Pressure transducers are an advanced form of pressure sensor element. The smallest possible component defined by the measuring principle is the pressure sensor. It is the pressure sensor that changes the physical variable 'pressure' into a quantity that can be processed electrically. A pressure transducer is the next level of sophistication. In a pressure transducer the sensor element and casing are in electrical contact and have a pressure connection.

The typical output signals from pressure transducers lie between 10 mV and around 100 mV, depending on the sensor principle in question. These signals are not standardised, however, nor are they compensated. With pressure transducers of the thin-film type it is customary for just the sensor element to be welded to the pressure connection and then bonded electrically. Priezoresistive pressure transducers, on the other hand, need to run through far more production steps since the semiconductor sensor element has to be protected from the influence of various media by a chemical seal.

Output signal

Pressure transducers do not contain any active electronics and hence no components which stabilise the supply voltage. This means that the output signal is always proportional to the supply voltage. Typical output signals are, for example 2 mV/V with thin-film pressure transducers and 100 mV/V with piezoresistive pressure transducers. The output signal is proportional to the supply voltage.

Temperature error

Every pressure transducer has not only sensor-specific output signal but also a temperature error that is typical for the particular sensor principle. Figure 1 shows the typical characteristic curves for the temperature errors of

a) thin-film pressure transducers

b) piezoresistive pressure transducers.

Figure 1. Temperature characteristics of transducers
Figure 1. Temperature characteristics of transducers

As this diagram shows, thin-film pressure transducers have a characteristic curve that it is far easier to compensate than that of pressure sensors made of semiconductor materials.

Linearity

The linearity figures specify the value of the maximum deviation of the characteristic curve from the maximum line through zero and the end point.

Pressure measuring converters

Pressure measuring converters represent the next stage of assembly of pressure measuring instruments. At their electric outputs they have standardised output signals that can be relayed directly to follow-up control units, eg, 4 to 20 mA.

They consist of:

* An elementary sensor (a. piezo, b. thin-film strain gauge).

* Pressure connection.

* Signal processing electronics.

* Casing.

* Electrical connection.

No typical designs have crystallised on account of the large number of different applications, but a certain trend is visible:

Pressure connection: G 1/2" (in the USA: 1/2" NPT), CrNi steel

Output signal: 4 to 20 mA, 2-wire

Casing material: CrNi steel

The specifications and definitions of characteristic data for electric pressure measuring systems have been standardised in DIN 16 086 since 1992. Unfortunately, not all the data sheets for pressure transducers and pressure measuring converters comply with this DIN standard, leaving the user with no more than a distorted picture for comparing technical specifications.

It is customary to quote the following data in technical descriptions of pressure sensors, pressure transducers and pressure measuring converters.

Measuring range/measuring span

The measuring range is the span between the start and the end of the measurements. The error limits quoted in the data sheet apply within this measuring range. The type of pressure, eg, positive relative pressure (overpressure), negative relative pressure (underpressure), absolute pressure or pressure difference, is also specified in order to define the measuring scope.

Overload range

The overload range defines the pressures to which a pressure measuring converter can be exposed without it suffering permanent damage, eg, zero-point offset. The pressure measuring converter is allowed to deviate from its specified technical data in this span between the measuring range and overload limit. The overload limit is usually defined by the sensor principle.

With piezoresistive pressure measuring converters the overload pressure is identical with bursting pressure. In the case of thin-film pressure measuring converters, on the other hand, there are notable differences between overload pressure and bursting pressure. This is owing to the sensor materials silicon and stainless steel. While steels enter a flow phase when they exceed their resilient range, brittle materials display a linear characteristic up to a bursting point (Figure 2).

Figure 2. Stress-strain cause of stainless steel/silicon
Figure 2. Stress-strain cause of stainless steel/silicon

Bursting pressure

Bursting pressure defines the pressure range which, if exceeded, can lead to the total destruction of the pressure measuring converter.

Power supply

An auxiliary energy supply is required to operate pressure transducers and pressure measuring converters. The most widespread solution is a direct voltage of 24 V. Thanks to the use of voltage-stabilising components, pressure measuring converters usually have a bigger supply voltage range of eg, 10 to 30 V d.c. Within this range there should be no effects of supply voltage variation.

For example, if the pressure measuring converter is calibrated in the factory with an auxiliary voltage of 24 V d.c., there should be no change of accuracy if the converter is actually operated with just 12 V d.c. The effects of supply voltage variation should not greatly exceed 0,1% per 10 V.

Output signal (analog, digital)

Current and voltage signals have become established as the main alternatives for output signals. Exactly which output signal is selected will depend mainly on the indicating and control devices that follow on after the pressure measuring converter. As a general rule it can be said that current signals are more immune to interference during transmission than voltage signals.

Systems with 4 to 20 mA in two-conductor technology are becoming increasingly popular in industrial plants. The main feature of this technology is that the power supply and measuring signal are both carried over the same connection lines, which for elaborate installations signifies a notable saving in wiring costs.

At the same time the higher zero point (4 mA) enables the measuring position to be monitored for open circuits and device failure, because in these cases the flow of current would drop below 4 mA. This change can be used in the evaluation units, eg, to trigger an alarm.

From the automotive industry there is also an increasing demand for so-called ratiometric voltage signals. This means, for example, that the supply voltage range is defined as 5 V ±10% and the output signal specified as 0,5 to 4,5 V d.c. ±10%. If the supply voltage amounts for example, to 4,5 V (-10% of the nominal range), the output signal will equal 4,0 V (4,5 V less 10%). This output signal saves several electronic components and enables cheaper pressure measuring converters.

With current outputs the permissible load is specified in addition to the output value. This load is called the maximum permissible load impedance.

RA (Ω) = (UB [V] - UBmin)/0,2 [A]

RA = Load impedance in Ω.

UB = Actual supply voltage in volts.

UBmin = Minimum permissible supply voltage quoted in the data sheet.

In practical applications the actual load used should be far smaller than the maximum permissible load in order to rule out measuring errors due to excessively high contact resistances.

There is also a certain demand for frequency outputs in special applications, eg, mining.

Yet another form of signal now gaining importance is the digital output signal, which with the right software can then be processed directly in microprocessor-controlled systems.

For more information contact WIKA Instruments, 011 621 0000, [email protected], www.wika.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Don’t buckle under pressure
VEGA Controls SA Pressure Measurement & Control
In Africa, urban populations are increasing and infrastructure is expanding at an unprecedented pace. This makes sustainable water management and treatment more crucial than ever. By investing in VEGA pressure instrumentation, water utilities and municipalities are equipping themselves with pressure sensors that facilitate sustainable water management focused on efficiency, reliability and resilience.

Read more...
VEGA handles the pressures of water treatment systems
VEGA Controls SA Pressure Measurement & Control
A water treatment system for a major metropolitan area in the Midwestern United States demands careful monitoring and management of processes across its sprawling network. Choosing VEGA for its process automation needs meant more than just obtaining precise and reliable pressure sensors.

Read more...
Monitoring the health of systems
SA Gauge Pressure Measurement & Control
Pressure and temperature gauges are vital instruments in various industries. However, they are susceptible to failures that can compromise their accuracy and reliability. When these gauges fail, the consequences can be severe.

Read more...
Enhancing beer brewing precision
VEGA Controls SA Pressure Measurement & Control
Brewing beer is a complex process that requires utmost precision in every step. To ensure precision, it is crucial to measure and control the pressure and point levels in the wort kettle and hops dissolver. Using VEGA instrumentation can offer numerous benefits to breweries.

Read more...
Greener mining through water management strategies
VEGA Controls SA Pressure Measurement & Control
Water scarcity is a pressing concern in South Africa, leading to the establishment of stricter regulations on water discharge and management. To promote greener mining operations that minimise environmental impact and optimise resource utilisation, responsible dewatering practices are essential.

Read more...
Pressure sensors for hydrogen applications
Instrotech Pressure Measurement & Control
Keller manufactures isolated piezoresistive pressure sensors. The great advantage of the piezoresistive measuring principle is its high stability.

Read more...
A new approach to milk processing
VEGA Controls SA Pressure Measurement & Control
Ensuring the quality and safety of milk throughout the production process is of the utmost importance in the dairy industry. Process instrumentation plays a vital role in this stage by providing accurate measurements of level, pressure and point level to guarantee optimal storage conditions.

Read more...
OEM high-pressure transducer with maximum long-term stability
Instrotech Pressure Measurement & Control
Instrotech is offering KELLER 10LHP, the flagship OEM pressure transducer in the KELLER product portfolio, which exemplifies the highest standards.

Read more...
OEM pressure sensor for mobile working machines
WIKA Instruments Sensors & Transducers
The MH-4-CAN, based on the MH-4, is a powerful, reliable and extremely resilient pressure sensor for mobile working machines.

Read more...
Magnetostrictive level transmitter
WIKA Instruments Level Measurement & Control
WIKA’s new model FLM-Tx-FLEX magnetostrictive level transmitter is used for high-accuracy, continuous level detection of liquids, including those with long insertion lengths.

Read more...