Motion Control & Drives


Continuous machine condition monitoring to reduce machine downtime: Part I of II

April 2001 Motion Control & Drives

Almost every plant has motors performing work. Motors and the related mechanical systems are a major area of maintenance cost for plants. National Instruments tools can be used to lower the cost of maintenance and prolong the life of existing equipment.

Facilities managers, maintenance managers, plant engineers and operations managers are responsible for all types of equipment. Machines involved in maintenance programmes include pumps, fans, conveyors, lifts, grinders, classifiers, rollers, winders, compressors, choppers, mixers, palletisers, cooling towers, vacuum systems, HVAC systems, and so forth. Each of these machines may be critical to the operation of the plant. The breakdown of critical machines causes loss of revenue for the plant.

Historically, technicians and engineers have used portable testing tools to monitor machine and motor health. Today's technologies in the personal computer and in instrumentation available for the computer have brought the costs of permanent continuous measurements down to justifiable levels. In addition, more and more plants are interested in providing machine health information directly to the operator at the HMI/scada workstation.

Most vendors of machine health monitoring equipment focus only on vibration sensors. This focus limits their ability to include other sensors such as temperature, pressure, flow, and electrical power measurements in their health analysis. In addition, traditional tools are not able to communicate directly to existing equipment on the factory floor. National Instruments' platform, LabVIEW and PXI, have all of these machine health monitoring and analysis capabilities plus the extended abilities of HMI/scada, I/O for many other sensors, and interconnections with existing plant equipment such as PLCs and scada systems.

Some readers may have made use of National Instruments products for high-speed data acquisition, HMI/scada, or odd-job measurements in the past. It is now possible to purchase one integrated platform for all of the needs of a plant. This article describes National Instruments'capabilities in the area of machine health monitoring.

Machine condition monitoring

Most machine monitoring applications focus attention on vibration (displacement, velocity, or acceleration) transducers to monitor vibration from key locations on rotating machines. Typically, the sensors are mounted above bearing housings for predictive bearing failure analysis and shaft balancing information. Figure 1 shows an electrical motor with pump commonly used in pipeline applications. This example also applies to other electrical motors with loads. The arrows below show typical vibration sensor locations. Vertical (V) and horizontal (H) sensors are mounted at 90° angles for bearing monitoring. Axial sensors are mounted at either end of the drive train to monitor axial movement.

Figure 1. Sensor locations and orientations
Figure 1. Sensor locations and orientations

By looking at the horizontal and vertical sensors, it is possible to see the movement of the shaft in the x-y direction. This movement is displayed on an orbit plot as shown below. The orbit plot shows the path of the centre of mass of the shaft. A perfectly balanced (ideal) shaft (motor and load) will appear as a 'dot' in the centre of the plot. Normal operation always produces some shaft motion. By monitoring and analysing this motion, it is possible to detect changes or trends that can flag the need for maintenance and also assist in problem diagnosis and balancing. National Instruments LabVIEW software provides extensive plotting and analysis capabilities that are ideally suited for display and analysis of vibration information.

Figure 2. An orbit plot
Figure 2. An orbit plot

Orbit plots - such as the one illustrated - depict signal changes as a function of time. The frequency-domain version of this signal-the vibration spectrum-also provides much useful information. The plot in Figure 2 shows a power spectrum of a signal that is characteristic of what one might see from a digitised signal from a vibration transducer. The process of creating such a plot is straightforward. Some care must be taken during acquisition. Because the vibration signal is dynamic (rapidly changing in time), it is important to apply an anti-aliasing filter prior to digitisation. Dynamic range and a variety of gains are also important, because the level of such signals can vary widely. Following acquisition, the time domain samples are transformed into vibration spectra by applying an FFT-based algorithm running on the computer. By examining the spectra, one can see the amplitudes and phases of the vibration components as a function of frequency.

By recognising the frequency bins associated with the speed of the machine, one can estimate the forcing functions - the probable source of the vibrations. For example, imbalance typically causes a change in the vibration component associated with the same frequency as the rotational speed of the machine. Vibrations at twice the speed of the machine are typically due to mechanical looseness of the motor or load. Other common vibration sources include oil in sleeve bearings, rolling element bearings, gear teeth, and electrically induced vibrations from electrical motor rotor and stators. Each of these vibrations occurs at a known frequency in comparison to rotational speed of the system.

Figure 3. FFT of a signal with many frequency components. This chart is a standard FFT display commonly used by machine analysis
Figure 3. FFT of a signal with many frequency components. This chart is a standard FFT display commonly used by machine analysis

Trending

Trending involves watching vibration levels over time and noting patterns in these levels. By monitoring the vibration levels over time, you can see changes in vibration level from a particular source. For example, if more vibration occurs over time from the motor's drive end bearings, a reasonable conclusion is the machine is nearing the need for bearing replacement. By comparing the vibration levels of the bearings to the specifications of the manufacturer, it is possible to gauge the condition of the bearing and how soon it will require maintenance.

One challenge with machine health monitoring is that each vibration (or velocity or displacement) sensor will report vibration from all sources. While the vibration spectrum helps review the vibration level from each source, it becomes helpful to decode the time series data into independent vibration source data streams. In machine speak; a multiple of machine speed is called an order. With sophisticated analysis routines from the National Instruments sound and vibration tools, LabVIEW is able to extract the vibration source information or order information. This further helps to monitor and trend the vibration signal from each source.

Figure 4. The picture shows vibration source data from the four most contributing sources. The data is taken from an engine during run-up to set rpm work levels. This method is useful in detecting particular rpm speeds where vibration sources may pose problems for long-term health of the machine
Figure 4. The picture shows vibration source data from the four most contributing sources. The data is taken from an engine during run-up to set rpm work levels. This method is useful in detecting particular rpm speeds where vibration sources may pose problems for long-term health of the machine

A common visual trending tool is the waterfall plot. This display tool shows the movement of spectral data over time. It is a common trending tool used to see the increase in vibration amplitudes and to see the appearance of resulting vibrations.

Figure 5. The waterfall plot has controls for panning, zooming and rotating the coordinate system. This tool helps the machine analyst focus attention on specific areas of interest
Figure 5. The waterfall plot has controls for panning, zooming and rotating the coordinate system. This tool helps the machine analyst focus attention on specific areas of interest

A more complete picture of vibration trends can be displayed with the Lab-VIEW intensity chart. Three parameters are displayed in the same chart, machine speed, vibration frequency (FFT) and amplitude. The amplitude of vibration is displayed with colour. In the display shown, it is possible to see each order or vibration source in the bands originating from the zero axis of the chart. An optional cursor slices through the data to produce a more complete spectrum at a particular speed or time.

Figure 6. Historical trend
Figure 6. Historical trend

Historical trending

A more common trend display is a 2D historical trend. This trend shows values as they change over time. These trend lines are not limited to vibration data, yet can also display digital status information as well as other physical data such as pressure, flow, and temperature. These additional factors further help to identify the state and condition of the machine.

Figure 7. This chart shows additional user interface tools that allow the operator to change between views of signal data. Tab controls and pushbuttons are common tools for operator interface design
Figure 7. This chart shows additional user interface tools that allow the operator to change between views of signal data. Tab controls and pushbuttons are common tools for operator interface design

National Instruments

(011) 805 8194

[email protected]

www.ni.com/southafrica

The second part of this article will begin by looking at electrical power condition monitoring.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Robotic filling systems for the pharmaceutical industry
Motion Control & Drives
Pharma Integration, a leading pharmaceutical manufacturer, aims to replace traditional mechanical filling lines with compact, fully automated systems that are 100% robot-driven using machines known as Azzurra. Their integrated Faulhaber drives play a crucial role in the fill-finish process, ensuring the highest precision and safety across multiple production steps.

Read more...
New generation soft starter ranges
Motion Control & Drives
Schneider Electric has launched its new generation Altivar ATS430 and ATS490 soft starter ranges in Anglophone Africa, the latest innovations in motor control technology.

Read more...
Machinery maintenance and the hidden cost of fuel adulteration
Motion Control & Drives
Fuel adulteration is one of the most insidious threats to industrial machinery, safety and environmental compliance. Craig FitzGerald, chief executive officer of ISO-Reliability Partners, discusses how this widespread issue undermines mechanical performance and operational safety, and also poses significant legal and financial risks.

Read more...
Sensorless control of brushless
Motion Control & Drives
Many applications would benefit from a brushless motor without a sensor. A method developed by maxon is now setting new standards for precision and reliability.

Read more...
Precise information in the cockpit with FAULHABER stepper motors
Motion Control & Drives
For the display of Bugatti’s upcoming luxury model, Tourbillon, something truly special will be presented. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Complete mine hoist systems
Motion Control & Drives
From friction to single and double drum hoists, ABB is a complete supplier of various types of mine hoist systems.

Read more...
Innovative braking technology for heavy-duty hoists
Motion Control & Drives
The electro-hydraulic disc brakes in the DX series from RINGSPANN have been re-engineered, and are proving to be a trendsetter in the holding and emergency stop systems in the hoists of heavy-duty and container cranes.

Read more...
Largest private wind farm in South Africa
Motion Control & Drives
The Witberg wind farm will prevent the emission of more than 420 000 tons of CO2 per year in 122 000 households in the Western Cape.

Read more...
The environmental benefits of correct lubrication storage
Motion Control & Drives
While selecting the right lubricant for an application is key, how that lubricant is stored between applications is an often overlooked but critical aspect of reducing contaminants in machinery across a plant or site.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved