Motion Control & Drives


F1 gearbox rig simulates the on-track shocks in the test room

April 2001 Motion Control & Drives

In Formula 1, the difference between winning and losing is often measured in hundredths or thousandths of a second. However, even a team that has such an edge cannot enjoy success if its cars are not running when the chequered flag falls. Reliability also wins races, a fact recognised by the enormous sums that F1 teams spend to prove components under race conditions in the test laboratory. Jaguar Racing is at the forefront in this respect. The team has recently invested in a large (160 kW) inverter-based gearbox test rig which has been designed, constructed, programmed and installed by drives systems specialist Control Techniques.

Built at Control Techniques' Luton Drive Centre, the gearbox test rig, and its associated motors, (also supplied by Control Techniques) are now part of a suite of advanced testing facilities at Jaguar Racing's prestigious new F1 headquarters in Milton Keynes. The function of the rig is to simulate the on-track conditions gearboxes routinely encounter during F1 races. These can include load on one wheel only, (ie because the other has lifted), or simulating the over-run condition when the wheels drive the engine (which entails reversing the torque direction).

The test rig consists of three 160 kW motors, each driven by size 5 Unidrives, and a 5,5 kW motor controlled by a size 2 Unidrive. The first of the l60 kW motors runs in speed control mode and mimics the input from the engine. Driving through a step up gearbox at 4300 rpm, it gives a maximum speed into the Jaguar Racing gearbox of 18 000 rpm. The two remaining 160 kW motors are torque controlled. They are coupled to the output shafts of the Jaguar Racing gearbox and simulate the output loads. The final smaller 5,5 kW motor is referenced from the input drive and drives the gearbox oil pumps.

The control for the drive system is provided via Control Techniques' high-speed fieldbus system, CTNet, in conjunction with the company's SYPT, Windows based, graphical programming software. This combination provides the master speed reference to the input drive, ensures independent torque control or load sharing for the output drives and furnishes the test engineers with a graphical display to aid dynamic diagnostics. The SYPT software also produces torque and speed displays for the console in the test rig control room.

The rig - a crucial tool in race preparation

The test rig is in regular use, due in no small part to the requirement to have three gearboxes (two spares) available for any race. The gearboxes themselves fall into two categories: brand new units and used units that have been refurbished or rebuilt. Each newly built gearbox is subjected to a test of at least 45 minutes in both forward and reverse torque directions. For used gearboxes the total test time is usually less, typically 1 h. The tests on both units start with a warm up period under no load conditions. This enables the test engineers to monitor the oil flow rates and check the lubrication pressure and temperature before moving into second phase where loading is increased progressively right up the rev scale to a maximum (usually) of 16 000 rpm. During this run-up the comprehensive facilities provided by the test rig enable the test engineers to tune sensors in the gearbox, and to calibrate clutch and gear positions using paddles on an F1 steering wheel in the rig control room.

According to Rob Dorney, Transmission Designer at Jaguar Racing, "We have used the rig extensively to run in gearboxes prior to race events and for research and development purposes. It has proved invaluable for function testing the gearboxes, calibration and fault finding. There have been several instances where the rig has flagged up transmission problems before the gearbox is fitted to the car, preventing car breakdowns and therefore saving valuable track time."

Regenerative drive system minimises energy use

The length of the tests with a conventionally configured 160 kW drive system would normally mean quite a hefty electricity bill for Jaguar Racing. However the actual energy used in the testing procedure is insignificant due to the regenerative design of Control Techniques' drive system. When the test rig is in normal running condition, the power being used from the mains supply is negligible as a result of the power on the DC bus recirculating. This is achieved by the output drives putting power back into the common DC bus used by the input drive. The regenerative system capacity is considerably higher than what is needed for 'normal' running - the only time that almost full capacity is approached is when the system is stopping in an emergency.

"The installation of this rig is a further indication of how Control Techniques is able to take a problem, break it down and provide a system solution to solve it, commented Eddie Kirk, Control Techniques' UK Sales and Marketing Director. "The gearbox test rig is one of the first fruits of the technology partnership that Control Techniques has with Jaguar Racing. It is a terrific example of how the latest in technology in one industry sector can be transferred to provide benefits in another."

[email protected]



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Next-gen battery-driven grease gun
SKF South Africa Motion Control & Drives
SKF’s innovative TLGB 21 battery-driven grease gun optimises lubrication efficiency and reduces costs, by seamlessly combining advanced technology with a smart, rugged design.

Read more...
Autonomous robots provide green logistics
DNH Tradeserve t/a DNH Technologies Motion Control & Drives
In 2007, Heinrich Amminger and Martin Trummer from Austria had an idea for revolutionising warehouse logistics. They developed the automated small part warehouse – an intelligent and very environment-friendly logistics system that is winning an increasing number of customers for Ylog, a startup company.

Read more...
Precision drives on the Red Planet
DNH Tradeserve t/a DNH Technologies Motion Control & Drives
More than 100 electric motors from maxon have been used on the Red Planet, and have withstood cosmic radiation, dust storms, and temperature fluctuations. The key to success is standard industrial products.

Read more...
Solar-powered drive solution for water pumps
Schneider Electric South Africa Motion Control & Drives
Schneider Electric South Africa has launched its Altivar Solar ATV320 variable speed drive (VSD), a solar-powered drive solution that is compatible with a wide range of water pumps, catering for water challenges and decarbonisation of irrigation pumping and agriprocessing machinery.

Read more...
Dependable belt rip detection
Motion Control & Drives
Becker Mining has launched the newly developed BRS4.0 belt rip detection system, with advanced features for greater durability, higher efficiency, and improved safety.

Read more...
Flat face and flat face screw couplings for mining
Motion Control & Drives
Quick couplings are the critical connectors that keep mining systems running. Within the mining industry, the choice of coupling can significantly impact equipment performance, downtime, and maintenance costs. Stucchi offers flat face and flat face screw couplings that are designed to withstand mining’s unique challenges.

Read more...
The importance of original branded bolt securing products
Bearing Man Group t/a BMG Motion Control & Drives
BMG is concerned about the proliferation of counterfeit merchandise, and the dangers associated with using inferior goods.

Read more...
New-generation drill rig
Motion Control & Drives
Epiroc is launching the new-generation PowerROC T35, offering both increased fuel efficiency and faster operations.

Read more...
Compressed air treatment do’s and don’ts
Artic Driers International Motion Control & Drives
As a long-established importer and manufacturer of air dryers, Artic Dryers often sees the results of poor installation and issues with aftercoolers that create serious problems in air drying systems.

Read more...
Understanding standby, prime and continuous gensets
WEG Africa Motion Control & Drives
The increasing reliance of South African businesses on generator sets to mitigate power disruptions highlights a crucial need for proper selection based on specific operational demands. Despite their growing usage, there is still widespread confusion about how to choose the appropriate genset, often leading to inefficient and costly decisions.

Read more...