IT in Manufacturing


Digital transformation and collaborating robotics

December 2017 IT in Manufacturing

Digital transformation and associated technologies – big data, cloud services and collaborating robots in particular – are generating enormous interest. Industrie 4.0 will have a strong impact in the coming years on Africa/South Africa in general, especially the South African manufacturing industry. It remains a key topic in South Africa and at the Manufacturing Indaba 2017 weighted value was placed on the subject.

Scratch the surface and behind the enthusiasm generated by the technological developments lie issues for society at large concerning the impact and effects of digital transformation.

Background

The availability of products and services that use digitised technologies has increased at breakneck speed. There are many examples to illustrate the potential of how the technology and infrastructure can provide information and intelligence on a wide scale, and with reliability. In the workplace, data analysis and visualisation, integrated and networked machines, and collaborating human-machine dialogue, are becoming established in the same way that personal computers became part of the office environment in the 1980s. From a critical perspective, this development has brought with it risks for consumers and market participants, such as data fraud and attacks by hackers.

Any consideration at all thus far of risks and opportunities for the workplace, and society at large, has been rudimentary and fragmented.

Society 4.0

While it is certainly the case that new technology is able to improve the standard of living of society as a whole, technology is itself responsible for less desirable developments, like environmental pollution or rising unemployment, specifically through the use of automation technology. In this respect, the interplay between society, technology and science can be seen as a cycle leading to a system that exerts constant evolutionary pressure on society and technology.

“For Industrie 4.0 to be fully realised in the future, both primary and secondary education systems will have to place an urgent focus on mathematics and science, and the quality of the teaching. Secondly, tertiary institutions and industry need to be closely aligned regarding the curricula of the degrees and diplomas to meet industry demands of the future. This future is much closer than most think. Technology is continually evolving, and at an ever-increasing pace. “We as a nation cannot afford to be left behind,” notes Victor Marques, country manager of Omron South Africa.

Change in working conditions

South African industry needs to find ways of adapting and using the technologies driving the so-called fourth industrial revolution (Industrie 4.0) to remain globally competitive yet maintain and create jobs in a high-unemployment environment.

Industrie 4.0 will influence the conditions of and requirements for employees in many areas. Driven by the application of machine-to-machine communication and an increase in the realisation of autonomous systems, a scenario has arisen in which the demand for qualified production controllers and managers has increased but the demands placed on workers themselves can be reduced. How the increase in productivity is divided among workers depends crucially on social partners. The impact on the general situation of workers and unskilled labour can be positive. On the other hand, their skilled counterparts will have to come to terms with growing pressure on performance and skills.

“The world is a far more connected place with a tremendous need for data,” states Marques. “The age of Big Data is here, and the costs for transmitting, receiving and storing it will drop as competition and market demand increase. Therefore, education remains key as does a rapidly accelerated installation of infrastructure such as fibre coupled with cost effective and ubiquitous access. We in Africa are faced with unique challenges and opportunities. Our creative think tanks will have to come up with innovative solutions to fully utilise these to leverage benefit for all of the continent’s people.”

Discourse on the change to Industrie 4.0

Industrie 4.0 and, more generally, the digitisation of our day-to-day lives are bringing many improvements in their wake. The increased efficiency, improvements in productivity and new services will change our society, behaviour and the corporate landscape. The transformation will mean that countries that promote digitisation will be able to defend and build on their competitive position. Against this background, Germany, for instance, must learn to cope with intense global demographic change in society and the world of work.

The change to a digital society will take place over the next 20 to 35 years. The course of growing demand for skills and training, the transformation from analog to digital infrastructure, and the adoption of fully integrated commercial ecosystems, will not necessarily run smoothly. Looking at the potential impact of Industrie 4.0, it would seem that multiple polarisation lies ahead in which, depending on the combination, individuals, regions and industry will experience advantages, but also risks that cannot be influenced directly.

The availability of digital infrastructure, an increase in the availability of data sources and a requirement for the efficiency of services and algorithms in line with Moore’s Law are the prerequisites for the change to a digital society and Industrie 4.0. From a critical perspective, however, if ubiquitous intelligence or infrastructure is not available, cannot be used optimally, or is consciously disregarded, then this in itself has inherent risks.

The effects of Industrie 4.0 and the further use of robotics in the world of work are many and various, and are influenced by the availability of infrastructure in a company, as well as by digital investment strategies and cooperation between social partners.

Digital transformation will change the demand for skills. More highly skilled workers with an understanding of complex relationships will be required. The knowledge surrounding these relationships will become obsolete more quickly as technology continues to develop, and will constantly have to be kept up to date. Society will experience a new and greater dependency on up-to-date knowledge, while at the same time processes considered monotonous and irksome will be eliminated as machines become capable of making decisions autonomously. In some cases, such a development will mean that even specialist workers will no longer be required in a production environment, and it is also possible that Industrie 4.0 could bring about ‘technological unemployment’ among both specialist personnel and their lower-skilled counterparts.

Marques concludes that we as South Africans need to start at the grassroots level, our schools, by helping to foster an interest in the sciences at primary and secondary level. The career streams of IT, computer science and engineering need to be promoted as ‘the stars’ during career guidance sessions at school. As for industry, all the relevant stakeholders who are not in the know need to familiarise themselves with the concepts of Industrie 4.0 and all the possible benefits and value that this technological revolution can bring. Integration and service providers need to ensure that they are always ready to implement the latest innovations – those who do not, simply will not survive.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...
Real-world lessons in digital transformation
IT in Manufacturing
Synthesis has helped businesses across multiple industries with their digital transformation by solving their unique integration challenges.

Read more...
Enhancing cyber security for industrial drives
Siemens South Africa IT in Manufacturing
The growing connection between production networks and office networks as part of IT/OT integration and the utilisation of IoT have many benefits for industrial companies. At the same time, they also increase the risk of cyber threats. Siemens ensures that your know-how and plants are protected at all times.

Read more...
Immersion cooling systems for data centres
IT in Manufacturing
The demand for data centres in Africa is growing. The related need for increasing rack densities brings with it escalating cooling requirements.

Read more...
Transforming pulp and paper with automation and digitalisation
ABB South Africa IT in Manufacturing
The pulp and paper industry in South Africa is undergoing a significant transformation from traditional manual processes to embracing automation technologies. Automation in pulp and paper mills aims to improve various production stages, from raw material preparation to final product creation.

Read more...