IT in Manufacturing


New technology automates Modbus routing setup in gateways

October 2017 IT in Manufacturing

For many applications, embracing the IIoT has paid huge dividends. One noticeable trend is the migration of a large number of serial devices to Ethernet-based networks, allowing plant managers to tap the full potential of their legacy devices by unlocking previously unused data.

However, adding value to these serial devices comes at a cost in terms of time and effort, especially when dealing with a large-scale Modbus network. For example, let’s take a look at how the complicated nature of this type of network presents itself in building automation where hundreds to thousands of serial-based temperature controllers communicate via Modbus RTU protocol. These controllers need to be monitored in a control room, which uses Modbus TCP. At this point, the non-interoperability of protocols becomes an issue. A tried and tested solution to overcome non-interoperable protocols is installing high port density Modbus gateways that convert serial to Ethernet, as well Modbus RTU to Modbus TCP, and vice versa. However, designers still have to figure out how many gateways need to be installed and how many serial ports are needed on each gateway. Therefore, planning a network’s topology that involves a large number of Modbus devices to achieve full-fledged connectivity can really test engineers’ mettle.

Reality bites

To engineers, spending too much time and effort on planning a Modbus network’s topology is counter-productive. For example, they find it especially time-consuming to set up a Modbus slave ID routing table, which lists the connections of Modbus devices (Modbus slave IDs) to specific serial ports on a gateway. Adding to the frustration is a high possibility that things might not go according to plan in the field. Connectivity errors at field sites can undo all the meticulous planning in the office within moments, thus, sending engineers back to the drawing table and redoubling their efforts.

A crucial aspect of planning a Modbus network’s topology is to eliminate these connectivity errors when dispatching a large number of Modbus requests to the serial devices that are connected to a Modbus gateway. Life would be so much easier for engineers if they did not have to worry about which serial devices were connected to which serial ports on a Modbus gateway. In an ideal situation, they would be able to just send out Modbus requests to a Modbus gateway, and the latter would automatically find the correct serial port that connects with the target Modbus device. This would iron out many pain points, even when adding new Modbus devices to a system, or connecting existing devices to a different serial port.

The key challenges

Serial-based device response times are generally slower than those of Ethernet-based devices. Their slow response is even more evident when they are connected to a gateway in a daisy-chain topology, as the one-request-one-response nature of a Modbus protocol leads to a longer polling time. In these types of setups, a one-port Modbus gateway delivers better performance because a scada system can communicate independently with each gateway; thus, shortening the communication gap between the large number of Modbus devices and a scada system. However, the management of multiple Modbus gateways is very complicated. Hence, multiport Modbus gateways are more adept at managing a large number of Modbus devices. For example, one 16-port Modbus gateway can replace 16 one-port Modbus gateways. In space-limited applications, it’s a win-win situation that frees up physical space and only requires one power cable and one Ethernet cable. In addition, the large number of IP addresses needed for 16 one-port Modbus gateways can be consolidated into a single IP address. For scada systems, another benefit is lower connection fees as they are normally charged according to the number of connections.

But multiport gateways are not exactly a breeze when it comes to the management of multiple Modbus devices. Engineers first need to segment all the devices into groups and then connect them to a specific port on the gateway. This is why a well-created Modbus slave ID routing table of a gateway’s serial ports is so important, but creating an efficient routing table is time-consuming.

Dispatching a large number of Modbus requests

Unlike Ethernet switches, where routing is accomplished automatically through an ARP table, the routing mechanism for Modbus gateways with multiple ports is much more intricate. Currently, two types of routing mechanisms address the different requirements in Modbus-based networks.

Routing by an IP address or TCP port

Some Modbus gateways perform the serial port mapping functionality via an IP address or TCP port. This mechanism is suitable for engineers who want to monitor field devices in segments. All the Modbus slave devices that are connected to the same serial port through daisy-chain wiring correspond with a specific IP address or TCP port. That is, each serial port on a gateway corresponds with a unique IP address or TCP port. Furthermore, a high-port-density gateway can be used instead of a large number of low-port-density gateways. As previously mentioned, this reduces cabling significantly.

A drawback is that engineers have to manually configure as many IP or TCP connections as the number of serial ports available. In large-scale Modbus environments, systems usually adopt a large number of multiport Modbus gateways, making configuration a time-consuming task – not to mention the extremely high connection fees involved.

Routing by using a gateway’s Modbus-ID routing table

For engineers who care about connection fees and do not need to monitor devices in segments, a more popular option is using a Modbus slave ID routing table. The main purpose of a Modbus slave ID routing table is to indicate which Modbus device (Modbus ID) is connected to which serial port on a gateway. Once a gateway receives a Modbus request for a specific Modbus device, it can dispatch this request via the referring Modbus slave ID routing table to the serial port that connects to the target Modbus device. A scada system benefits by using only one IP address or TCP port to communicate with all the Modbus devices that are connected to a gateway, easing the management of Modbus devices and reducing connection fees considerably.

The Modbus slave ID routing table needs to be maintained for troubleshooting and maintenance, however, creating as well as managing a Modbus slave ID routing table is laborious. Also, it needs to be stressed that when engineers come in contact with a Modbus gateway for the first time, it would be as if they are climbing a mountain as they would be completely unfamiliar with routing table settings. They have to bundle the Modbus slave IDs into groups and then connect each group to a different serial port.

Just one click

A new leading-edge technology that automatically detects the Modbus requests from a scada system and sets up the Modbus slave ID routing table comes in answer to the engineers’ prayers. The Auto-Device Routing function only requires a single click to help the gateway detect which serial port is connected to a target Modbus device, allowing it to automatically dispatch a Modbus request to the correct serial port. It automatically creates the routing table, saving significant time and costs as engineers no longer need to manually create the Modbus slave ID routing table, eliminating possible human error in the process. Furthermore, it eliminates the effort needed to double check the actual connections at field sites. There is no need to refer to a historical Modbus slave ID routing table when adding or removing Modbus devices, saving time and effort.

Conclusion

By automatically creating a routing table, the Auto-Device-Routing technology makes the configuration and maintenance of a gateway’s Modbus slave routing table a thing of the past. This patent-pending function features in Moxa’s MGate MB3000 series, which consists of high-performance Modbus gateways with 2, 4, 8 or 16 serial ports. The series also supports routing by IP address or TCP port.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Development of motor control units for automotive industry
Siemens South Africa IT in Manufacturing
SEDEMAC has adopted the Siemens Xcelerator portfolio of industry software, which is used in the development of its motor control units and engine control units. The motor control units are used in EVs, hybrids, ebikes and power tools, while the engine control units are used for off-road and on-road engines.

Read more...
Cybersecurity and cyber resilience – the integrated components of a robust cyber risk management strategy
IT in Manufacturing
Organisations continuously face numerous cyberthreats in today’s digital landscape, and while many prioritise cybersecurity to safeguard digital assets, their strategies for cyber resilience often become neglected.

Read more...
Sustainable last-mile delivery electric trucks
Siemens South Africa IT in Manufacturing
Workhorse Group, an American technology company focused on pioneering the transition to zero-emission commercial vehicles, has adopted the Siemens Xcelerator portfolio of industrial software as it builds electric trucks for sustainable last-mile delivery.

Read more...
South Africa’s role in the AGI revolution
IT in Manufacturing
AI has found its way into general conversation after the emergence of large language models like ChatGPT. However, the discussion is increasingly turning to the search for Artificial General Intelligence (AGI), which could entirely change the game.

Read more...
Predictive asset performance management with ABB Ability Genix
ABB South Africa IT in Manufacturing
The ABB Ability Genix APM suite is a comprehensive asset management platform powered by AI, IIoT and model-based predictive data analytics. This enables a paradigm shift towards a more proactive and predictive asset management approach.

Read more...
Intelligent automation primed for $47 billion revenue by 2030
IT in Manufacturing
According to GlobalData, the intelligent automation market is set to grow from $18 billion in 2023 to $47 billion in 2030, driven by advancements in AI, particularly the rapid adoption of generative AI.

Read more...
Chocolate manufacturing with Siemens Xcelerator
Siemens South Africa IT in Manufacturing
Freybadi, one of the largest chocolate manufacturers in Indonesia and a trusted supplier of chocolate in the Asia-Pacific, Middle East and African regions, has adopted the Siemens Xcelerator portfolio of industry software to optimise its manufacturing and production processes.

Read more...
Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
A CFO’s guide to unlocking the potential of gen AI
IT in Manufacturing
CFOs of leading global organisations understand that their role extends beyond mere financial oversight; they are pivotal in steering organisation-wide transformation, particularly in the realm of technological advancement.

Read more...
Higher level cybersecurity certification for Schneider Electric
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s EcoStruxure IT NMC3 platform has obtained a new and higher level of cybersecurity certification, making it the first data centre infrastructure management network card to achieve SL2) designation from IEC.

Read more...