Industrial Computer Hardware


Enabling efficient and visual substation network management

March 2016 Industrial Computer Hardware

Creating a network management interface of devices and systems using different protocols can create risks and management issues that can compromise effectiveness and security for substation automation networks.

An efficient and visually represented PRP/HSR network using Power Scada with specially designed management middleware can effectively avoid these problems.

Overview

Traditional substation automation system (SAS) structure is an end-to-end hard-wired network. This makes sure all communication is in real-time and that responses are quick. However, when the network communication system has been upgraded to an Ethernet-based network, all the devices are connected to Ethernet devices, such as switches and routers. This results in a potential risk of network communication latency due to network topology changes, traffic congestion, or packet queue prioritisation. For mission-critical or time-sensitive applications, even millisecond long network interruptions cannot be tolerated, as they may severely impact system operation or jeopardise onsite personnel safety. The IEC 62439 standard states that the time that the plant allows for recovery before taking emergency actions (e.g., emergency shut-down, fall-back mode) should be less than 10 ms. In IEC 61850 edition 2, it also clearly states that the communication redundancy times of GOOSE and SMV protocols in substation automation systems are required to be bumpless.

What is PRP/HSR?

The Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR) protocols described in IEC 62439-3 are two technologies that provide seamless failover from a single point of failure. PRP achieves active network redundancy by packet duplication over two independent networks that operate in parallel, whereas HSR is designed primarily for ring topologies. Based on these two seamless redundancy protocols, a redundancy box (Redbox) can quickly activate non-HSR or non-PRP end devices connected to HSR or PRP networks with zero switch-over time. Mission-critical applications in SAS communication can benefit from these redundancy technologies to ensure network reliability.

Challenges faced

Redundant network monitoring and troubleshooting Networks commonly use MAC and IP addresses as management units to control the network and various network devices. However, PRP/HSR is a very new technology that duplicates packets on the link layer by using the same MAC address, ensuring that the client end can receive packets even in the event of a communication problem.

Unfortunately, the current network management system is unable to detect that the packet has been duplicated, so the user cannot see whether both packets have been received or not. Detecting whether or not both packets have been received gives im­portant information about the quality of the link and the health of the redundant network. Hence, managing and monitoring the PRP/HSR network is more difficult because system administrators will not know the redundant network’s real-time status. Troubleshooting for the failed redundant path also becomes another big challenge since the failure point of the network is unknown.

Un-unified device and network management interface

Manufacturing Messaging Specification (MMS) is the main monitoring and messaging protocol used for communication in IEC 61850 compliant systems. However, as more and more networking devices have been increasingly implemented in the IEC 61850 system, devices that do not run MMS, such as industrial Ethernet switches and embedded computers, have also become important for communication and control. In contrast to IEC 61850 devices, the protocol used today for managing IT equipment is Simple Network Management Protocol (SNMP), a protocol entirely distinct from MMS, based on a wholly different logical structure. As PRP/HSR devices use Supervision Frame for device management, it is difficult to integrate these two systems for monitoring and management.

The fact of there being different device and network management protocols, MMS for IEC 61850 control devices and SNMP for IT or networking devices, results in an incapacity of the central management suite, such as Power Scada, to manage both control devices and networking devices in a centralised manner. Given the fact that most market-available Power Scada software suites are compatible only to MMS protocol but not SNMP or Supervision Frame, network management on a single Power Scada becomes impossible; the networking devices are invisible on the Power Scada.

As a result, IEC 61850 system operators may not be able to correct or prevent system failures using the information provided by Power Scada.

Recommended solutions

The solutions outlined below can help establish efficient and effective management for a PRP/HSR substation automation network:

Native PRP/HSR substation computers can play an important role in a highly reliable smart substation

Some users have been using a PRP/HSR Redbox to enable a conventional computer to join the PRP/HSR network. However, this could add the risk of a single link/node failure. Instead, using a native PRP/HSR computer can avoid the risk of a single link/node failure.

The best use of native PRP/HSR substation computers is to deploy a PRP/HSR-capable Power Scada management server. With some specially designed PRP/HSR management middleware built in, the PPR/HSR management server can enable the Power Scada to collect and analyse the raw data from various distributed devices. The current redundant network status can be fully monitored, and the single-point failure can be immediately discovered. This makes real-time troubleshooting a simple task. Even system administrators with little knowledge of PRP/HSR technology can easily manage, monitor, and troubleshoot the PRP/HSR network on a single Power Scada platform.

The PRP/HSR management middleware should be able to support both SNMP and MMS interfaces, allowing the connection of various substation devices that run different communication protocols. The integration of the middleware and Power Scada enable all data to be effortlessly used and read in the substation Power Scada system through MMS protocol. Substation operators find it easy to manage all devices on the PRP/HSR system via the Power Scada visual tools. In addition, troubleshooting can be easy as any single failure point can be shown on the Power Scada, making the SAS or any other PRP/HSR applications more reliable and stable.

Enabling efficient and visually represented PRP/HSRM/

Even though there is a unified standard for PRP/HSR protocol, there is no standard for the network management interface. Using a native PRP/HSR management server with a built-in management middleware can help collect, analyse, and integrate all raw data from various devices on one single management platform. This makes network diag­nosis, troubleshooting, and device condition ­monitoring easier than ever.

For more information contact RJ Connect, +27 (0)11 781 0777, [email protected], www.rjconnect.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Moxa launches high-bandwidth Ethernet switch portfolio
RJ Connect Fieldbus & Industrial Networking
Moxa has announced its new MRX Series Layer 3 rackmount Ethernet switches that support 64 ports with up to 16 ports of 10GbE speed to accelerate data aggregation for industrial applications.

Read more...
Why battery storage is the backbone of future smart grids
RJ Connect Electrical Power & Protection
Battery energy storage systems (BESS) are becoming more and more crucial in modern smart grids as the global energy transition speeds up. Smart grids rely on them to balance and stabilise their loads.

Read more...
Panel PCs for the production floor
Vepac Electronics Industrial Computer Hardware
The TP-5945 is an ideal computing solution for various operations on the production floor. The clean and modern look, coupled with PCAP technology for accurate and responsive touch functionality, enhances the precision and practicality of industrial operations.

Read more...
Rugged waterproof box computers
Vepac Electronics Industrial Computer Hardware
Teguar waterproof box computers are constructed with rugged aluminium or stainless steel housing. The aluminium housing acts as a heatsink for efficient, fanless cooling. These computers can be used in a wide variety of applications that require a rugged and compact computer.

Read more...
Integrating networks in CNC machinery
RJ Connect Fieldbus & Industrial Networking
A leading global manufacturer of industrial machinery wanted to aggregate multiple applications into its CNC machines. Due to the use of different proprietary networks, integrating the networks and maintaining the components required substantial effort.

Read more...
Enabling multiple applications on a unified TSN network
RJ Connect Fieldbus & Industrial Networking
A leading global manufacturer of industrial machinery wanted to aggregate multiple applications into its CNC machines. Due to the use of different proprietary networks, integrating the networks and maintaining the components required substantial effort.

Read more...
Modularity for future scalability
RJ Connect Fieldbus & Industrial Networking
When it comes to managed switches, industrial-grade reliability, multicast availability and security enhancements based on the IEC 62433 standards are crucial features. There are a number of vertical markets where these switches can be used.

Read more...
Predictive maintenance in artificial lift monitoring systems
RJ Connect Industrial Wireless
With the trend in oil field digitisation gaining momentum, telematics can be tremendously useful in understanding equipment status, to facilitate predictive maintenance and avoid downtime.

Read more...
Multifunctional displays from ifm
ifm - South Africa Industrial Computer Hardware
A measured value high up in the cloud increases the global visibility of information, but not always the local visibility. For this purpose, ifm’s new multifunction display with a universal measurement input is the right choice in almost all applications.

Read more...