IT in Manufacturing


Application of Agile Project Management in a DCS upgrade

November 2015 IT in Manufacturing

Project management has as many definitions as there are types of methodologies. Yet, regardless of the definition, there is always a common theme: budget, time and resources.

There is no confusion that in order for any project to be successful, it must satisfy certain constraints. It must be completed within a specified time, it must be completed within a specified budget, and it must be completed with the use of assigned resources.

In order to ensure the correct tracking of the success of a project, project management tools are applied. These include a combination of templates and processes designed to answer questions such as:

• What business situation is being addressed by the project?

• What does the business need to do in order to achieve the objective?

• What will the business do?

• How will it be done?

• How will the business know when the objectives have been accomplished?

• How will the business measure how well it did?

Effectively, as one author put it, project management is organised common sense.

Paul Sikhakhane
Paul Sikhakhane

This clear view on the goals and the solution led businesses to the adoption of a traditional management life cycle with the steps of Scoping, Planning, Launching, Monitoring and Controlling and finally Project Closeout. Whilst this approach worked beautifully, it became a challenge for technology projects where the goal was clear yet the solution was not.

As a result, numerous new methodologies were created to deal with these challenges. These became variations of the traditional project management lifecycle and adopted many names including Waterfall, Rapid Prototyping, Scrum, Iterative and Adaptive. Collectively these project management life cycle models are termed agile project management.

Effectively, agile project management is the application of agile principles to traditional project management.

Lucky Penduka
Lucky Penduka

The adaptive methodology applied to a DCS upgrade project with positive results

Iterative and adaptive

The DCS upgrade project was broken into four separate projects, each with its own project management lifecycle. The execution of the individual components ensured that learning from one component could be used to make the next project component even more efficiently executed. This approach could be described as amplified learning as each adaptation of a solution was an iteration of a previous solution.

Customer is king

From the onset of the project it was made clear to the project team that the highest priority is to satisfy the customer. This meant that the true measure of success was not only an operational DCS, but also a client who received exactly what they had in mind when the order was placed.

In order to satisfy any evolving needs of the client, the project methodology was to make decisions as late as possible, keeping all options open for as long as possible. This allowed the project team to respond to any late changes. It also allowed different solutions to be explored without being locked into any inefficient solutions that might have been made without all the proper information, allowing all the accumulated learning to be incorporated into the project.

Effective communication

In order to maximise on the effectiveness of communication, the preferred method was to have only face to face meetings. This had a dual effect, it allowed for the project team and the client to meet frequently throughout the life of the project and it also reinforced a common understanding of the goals between the client and the project team.

Self-organising teams

One of the key principles of agile management is to drive the project via self-managing teams, acknowledging that the best architectures, requirements, and designs emerge from self-organising teams. The overall philosophy was to build the project plan around motivated individuals, giving them the environment and support they needed and trusting them to get the job done.

The project was structured to have four individual teams with each team tasked with executing a section of the upgrade. These teams were ­supported by a layer of technical specialist that offered support where needed. This was further enhanced by the creation of an open, honest and creative environment, where team members could contribute ideas which they deemed would be beneficial to the success of the project. This allowed the creativity of the individual team members to be harnessed.

From the outset, the teams were made aware of the overall solution and how the success or failure of one team would affect the others. This resulted in teams that not only worked independently as efficiently as possible, but that also pulled each other towards the achievement of the overall goal.

Overall goal

Each element that was introduced into the project had to pass through the filter of waste elimination with a response to the question: “Will this add business value?” If the answer was no, then it was excluded.

In addition, it was ensured that at regular intervals the teams reflected on how to become more effective and then adjusted their behaviour accordingly. This was combined with acknowledging that simplicity was key and the art of maximising the amount of ‘work’ not done was essential.

Conclusion

This approach resulted in a DCS upgrade project that underwent three months of planning, and only five days of execution with a smooth changeover that resulted in no loss of production hours. It was also found that the agility of the project management approach allowed the project team to welcome changes in requirements, even late in the project. The success of the project is testament to the fact that continuous attention to technical excellence and good design practice enhances agility.

For more information contact Paul Sikhakhane, Tongaat Hulett, +27 (0)32 439 4368, [email protected]





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

How digital infrastructure design choices will decide who wins in AI
Schneider Electric South Africa IT in Manufacturing
As AI drives continues to disrupt industries across the world, the race is no longer just about smarter models or better data. It’s about building infrastructure powerful enough to support innovation at scale.

Read more...
How quantum computing and AI are driving the next wave of cyber defence innovation
IT in Manufacturing
We are standing at the edge of a new cybersecurity frontier, shaped by quantum computing, AI and the ever-expanding IIoT. To stay ahead of increasingly sophisticated threats, organisations must embrace a new paradigm that is proactive, integrated and rooted in zero-trust architectures.

Read more...
2026: The Year of AI execution for South African businesses
IT in Manufacturing
As we start 2026, artificial intelligence in South Africa is entering a new era defined not by experimentation, but by execution. Across the region, the conversation is shifting from “how do we build AI?” to “how do we power, govern and scale it responsibly?”

Read more...
Five key insights we gained about AI in 2025
IT in Manufacturing
As 2025 draws to a close, African businesses can look back on one of the most pivotal years in AI adoption to date as organisations tested, deployed and learned from AI at pace. Some thrived and others stumbled. But the lessons that emerged are clear.

Read more...
South Africa’s AI development ranks 63rd in the world
IT in Manufacturing
The seventh edition of the Digital Quality of Life Index by cybersecurity company, Surfshark ranks South Africa 75th globally.

Read more...
Optimising MRO operations through artificial intelligence
RS South Africa IT in Manufacturing
AI is reshaping industrial operations at every level in the maintenance, repair and operations supply chain, where it is driving efficiency, predictive insight and smarter decision making.

Read more...
Data centres in an AI-driven future
Schneider Electric South Africa IT in Manufacturing
A profound transformation will begin to take hold in 2026 as AI becomes ever more ingrained in every aspect of life, and the focus shifts from LLMs to AI inferencing.

Read more...
Driving innovation in agricultural machinery
Siemens South Africa IT in Manufacturing
A leading Argentine agricultural machinery manufacturer, Crucianelli has adopted the Siemens Xcelerator portfolio of industry software to drive innovation and digital transformation of its business, from product ideation and development to production and to its extended dealer network.

Read more...
Don’t let the digital twin drift from reality
Schneider Electric South Africa IT in Manufacturing
The digital twins is a highly effective tool that offers real-world scenarios within a virtual environment. However, there is the danger of a disconnect stemming from a communication failure between the design, construction and operations phases of a project.

Read more...
Install and commissioning time cut by 50% thanks to digital twin insights
IT in Manufacturing
ECM Technologies, a world leader in the design and manufacture of innovative and modular low-pressure carburising industrial furnaces, has developed a solution that removes many of the installation and commissioning challenges relating to the development, testing and deployment of large-scale heat treatment plants.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved