IT in Manufacturing


Application of Agile Project Management in a DCS upgrade

November 2015 IT in Manufacturing

Project management has as many definitions as there are types of methodologies. Yet, regardless of the definition, there is always a common theme: budget, time and resources.

There is no confusion that in order for any project to be successful, it must satisfy certain constraints. It must be completed within a specified time, it must be completed within a specified budget, and it must be completed with the use of assigned resources.

In order to ensure the correct tracking of the success of a project, project management tools are applied. These include a combination of templates and processes designed to answer questions such as:

• What business situation is being addressed by the project?

• What does the business need to do in order to achieve the objective?

• What will the business do?

• How will it be done?

• How will the business know when the objectives have been accomplished?

• How will the business measure how well it did?

Effectively, as one author put it, project management is organised common sense.

Paul Sikhakhane
Paul Sikhakhane

This clear view on the goals and the solution led businesses to the adoption of a traditional management life cycle with the steps of Scoping, Planning, Launching, Monitoring and Controlling and finally Project Closeout. Whilst this approach worked beautifully, it became a challenge for technology projects where the goal was clear yet the solution was not.

As a result, numerous new methodologies were created to deal with these challenges. These became variations of the traditional project management lifecycle and adopted many names including Waterfall, Rapid Prototyping, Scrum, Iterative and Adaptive. Collectively these project management life cycle models are termed agile project management.

Effectively, agile project management is the application of agile principles to traditional project management.

Lucky Penduka
Lucky Penduka

The adaptive methodology applied to a DCS upgrade project with positive results

Iterative and adaptive

The DCS upgrade project was broken into four separate projects, each with its own project management lifecycle. The execution of the individual components ensured that learning from one component could be used to make the next project component even more efficiently executed. This approach could be described as amplified learning as each adaptation of a solution was an iteration of a previous solution.

Customer is king

From the onset of the project it was made clear to the project team that the highest priority is to satisfy the customer. This meant that the true measure of success was not only an operational DCS, but also a client who received exactly what they had in mind when the order was placed.

In order to satisfy any evolving needs of the client, the project methodology was to make decisions as late as possible, keeping all options open for as long as possible. This allowed the project team to respond to any late changes. It also allowed different solutions to be explored without being locked into any inefficient solutions that might have been made without all the proper information, allowing all the accumulated learning to be incorporated into the project.

Effective communication

In order to maximise on the effectiveness of communication, the preferred method was to have only face to face meetings. This had a dual effect, it allowed for the project team and the client to meet frequently throughout the life of the project and it also reinforced a common understanding of the goals between the client and the project team.

Self-organising teams

One of the key principles of agile management is to drive the project via self-managing teams, acknowledging that the best architectures, requirements, and designs emerge from self-organising teams. The overall philosophy was to build the project plan around motivated individuals, giving them the environment and support they needed and trusting them to get the job done.

The project was structured to have four individual teams with each team tasked with executing a section of the upgrade. These teams were ­supported by a layer of technical specialist that offered support where needed. This was further enhanced by the creation of an open, honest and creative environment, where team members could contribute ideas which they deemed would be beneficial to the success of the project. This allowed the creativity of the individual team members to be harnessed.

From the outset, the teams were made aware of the overall solution and how the success or failure of one team would affect the others. This resulted in teams that not only worked independently as efficiently as possible, but that also pulled each other towards the achievement of the overall goal.

Overall goal

Each element that was introduced into the project had to pass through the filter of waste elimination with a response to the question: “Will this add business value?” If the answer was no, then it was excluded.

In addition, it was ensured that at regular intervals the teams reflected on how to become more effective and then adjusted their behaviour accordingly. This was combined with acknowledging that simplicity was key and the art of maximising the amount of ‘work’ not done was essential.

Conclusion

This approach resulted in a DCS upgrade project that underwent three months of planning, and only five days of execution with a smooth changeover that resulted in no loss of production hours. It was also found that the agility of the project management approach allowed the project team to welcome changes in requirements, even late in the project. The success of the project is testament to the fact that continuous attention to technical excellence and good design practice enhances agility.

For more information contact Paul Sikhakhane, Tongaat Hulett, +27 (0)32 439 4368, [email protected]





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Development of motor control units for automotive industry
Siemens South Africa IT in Manufacturing
SEDEMAC has adopted the Siemens Xcelerator portfolio of industry software, which is used in the development of its motor control units and engine control units. The motor control units are used in EVs, hybrids, ebikes and power tools, while the engine control units are used for off-road and on-road engines.

Read more...
Cybersecurity and cyber resilience – the integrated components of a robust cyber risk management strategy
IT in Manufacturing
Organisations continuously face numerous cyberthreats in today’s digital landscape, and while many prioritise cybersecurity to safeguard digital assets, their strategies for cyber resilience often become neglected.

Read more...
Sustainable last-mile delivery electric trucks
Siemens South Africa IT in Manufacturing
Workhorse Group, an American technology company focused on pioneering the transition to zero-emission commercial vehicles, has adopted the Siemens Xcelerator portfolio of industrial software as it builds electric trucks for sustainable last-mile delivery.

Read more...
South Africa’s role in the AGI revolution
IT in Manufacturing
AI has found its way into general conversation after the emergence of large language models like ChatGPT. However, the discussion is increasingly turning to the search for Artificial General Intelligence (AGI), which could entirely change the game.

Read more...
Predictive asset performance management with ABB Ability Genix
ABB South Africa IT in Manufacturing
The ABB Ability Genix APM suite is a comprehensive asset management platform powered by AI, IIoT and model-based predictive data analytics. This enables a paradigm shift towards a more proactive and predictive asset management approach.

Read more...
Intelligent automation primed for $47 billion revenue by 2030
IT in Manufacturing
According to GlobalData, the intelligent automation market is set to grow from $18 billion in 2023 to $47 billion in 2030, driven by advancements in AI, particularly the rapid adoption of generative AI.

Read more...
Chocolate manufacturing with Siemens Xcelerator
Siemens South Africa IT in Manufacturing
Freybadi, one of the largest chocolate manufacturers in Indonesia and a trusted supplier of chocolate in the Asia-Pacific, Middle East and African regions, has adopted the Siemens Xcelerator portfolio of industry software to optimise its manufacturing and production processes.

Read more...
A CFO’s guide to unlocking the potential of gen AI
IT in Manufacturing
CFOs of leading global organisations understand that their role extends beyond mere financial oversight; they are pivotal in steering organisation-wide transformation, particularly in the realm of technological advancement.

Read more...
Higher level cybersecurity certification for Schneider Electric
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s EcoStruxure IT NMC3 platform has obtained a new and higher level of cybersecurity certification, making it the first data centre infrastructure management network card to achieve SL2) designation from IEC.

Read more...
Industrial automation edge AI
Vepac Electronics IT in Manufacturing
Teguar, a leading provider of industrial computer solutions, has announced an innovative partnership with Hailo, an AI chip maker renowned for its high-performance edge AI accelerators. This marks a significant step forward in Teguar’s mission to provide powerful and reliable computing solutions for a wide range of industries.

Read more...