PLCs, DCSs & Controllers


Data and the smart machine revolution

June 2018 PLCs, DCSs & Controllers

Take a look at Forpheus, Omron’s table tennis playing robot. It symbolises the company’s 3-i philosophy for machines – integrated, interactive, intelligent. How can a machine like Forpheus play a sport? While Forpheus combines several technologies to create a robot with human-machine interaction, the fundamental element to making any machine smarter is data.

The first step is collecting data, from individual machines or preferably from an entire production line. Analysing all this data can be handled effectively and cheaply using today’s processing power and cloud storage. Clean data is essential to enable more efficient processing and the best results. Displaying this collected information on a screen in an easy to understand way can help operators identify and respond to anomalies in the process.

Data analysis helps operators

Displaying process operation data in this way can already deliver 20 to 30% efficiency increases. However, as the amount of data increases, humans are less capable of interpreting it or perceiving patterns. By incorporating large data analysis software, computers offer a more accurate tool to support humans in the task of analysing the big data. These tools can identify irregularities in performance data and flag potential issues to the operator.

With more data and more advanced analysis, the insights and results become more comprehensive and accurate. For example, instead of just identifying an issue, the system can locate exactly where the problem is in the line and what needs to be done to fix it. The operator’s job is made easier and line efficiency is further optimised.

As the amount of data increases, data management also becomes important. Collected data is often taken offline for advanced processing and pattern recognition. The resulting patterns are transferred back to the factory to be implemented in real-time by the machine.

Using data to increase automation

Automation can be taken a step further. Smart systems could identify an issue or potential issue, flag it, and then automatically adapt parts of the production line to compensate for any shortfall whilst the problem was being fixed. All within safe operating parameters. This results in even better production efficiency.

Let us consider this at the level of an individual machine. Smart machines, equipped with data analysis capabilities, can optimise their behaviour for any given situation because they know how they are supposed to work normally. They monitor their own performance, ensuring it matches expected behaviour. If a defect or divergence from a standard pattern occurs, the machine reports the issue to the entire system and if possible compensates for the issue by amending its operation. From a system viewpoint, any alterations must be balanced throughout the line to ensure consistent operation between machines.

Real smart factory automation

The complexity of the data is one of the items that makes moving to a smart factory a major challenge. That is why Omron is implementing these smarter systems into its own processes, allowing the company to investigate requirements and develop best practices. And there is plenty to learn. At first when they start looking at their own processes two years ago, the very first data scientist spent 80% of his time just cleaning up the data.

Today they are applying what they have learned to their systems and products to bring the benefits of smart automation to their customers. Together with several selected customers, they are now carrying out experiments in smart automation, learning where any bottlenecks occur. In the end, only by performing this research in real factories can the real value be uncovered.

Human-machine interaction

Building on data collection and analysis, smart automation can be extended into the realm of human-machine interaction. Returning to Omron’s budding ping-pong champion, Forpheus has the capability to observe the motion of the opponent facing it on the other side of the table, along with cameras that watch the ball’s movement. Analysing the data from the sensors, it can calculate movement very precisely and quickly, so it can anticipate how the opponent will hit the ball and its trajectory. Forpheus then moves its paddle to intercept the ball and hit it back across the table.

How difficult or easy it returns the ball gives a clue as to one way this smart machine can be used to general advantage. By being able to assess how its opponent plays, it can determine its skill level. Forpheus can modify its own playing level to get the best from its opponent. If it plays at a slightly better level, the opponent will have a challenging game without becoming frustrated. Hence, smart machines can also be used to train people.

For more information contact Omron Electronics, +27(0)11 579 2600, [email protected], www.industrial.omron.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

ABB updates distributed control system
ABB South Africa PLCs, DCSs & Controllers
Leveraging 30 years of continuous innovation and reliability, ABB’s updated Freelance 2024 distributed control system (DCS) offers greater plant adaptability, faster and more reliable device communication, improved system security, and seamless data exchange.

Read more...
Four ways modern operations control can boost sustainability and efficiency
PLCs, DCSs & Controllers
With the growing importance of digital transformation, HMIs and scada have evolved from control panels to vast operational hubs. Next-gen HMI/scada can bring together data, personalisation, and advanced insights to successfully achieve organisational goals, it is important to think about HMI/scada holistically within the operations ecosystem.

Read more...
The convergence of intelligence: DCS, SCADA and TLC
Schneider Electric South Africa PLCs, DCSs & Controllers
In the early days of industrialisation, control systems were primarily mechanical, and relied on manual intervention and simple feedback loops to manage processes. Now, in the 21st century, industrial process automation systems are mind-blowingly intelligent, and provide almost unparalleled control and monitoring capabilities, making them integral to modern industrial systems.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice PLCs, DCSs & Controllers
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...
ABB modernises key board mill
ABB South Africa PLCs, DCSs & Controllers
ABB has secured a landmark contract to modernise Smurfit Kappa’s Paper Machine 5 at its corrugated cardboard mill near Mexico City. ABB will provide Smurfit Kappa with DCS, accompanied by a comprehensive paper machine drives system, encompassing some of the market’s most advanced drives and motors meticulously designed to optimise PM5’s performance.

Read more...
The synapses of the distributed control system
Schneider Electric South Africa PLCs, DCSs & Controllers
Industrial operations require a distributed control system (DCS) to coordinate and control their process subsystems in real time. Like the brain, a DCS is a multitasking maestro, controlling and coordinating complex processes in a myriad of industrial setting such as large manufacturing plants, providing valuable top-down control.

Read more...
Modular assembly platform for clean manufacturing
Beckhoff Automation PLCs, DCSs & Controllers
JR Automation delivers custom automated solutions for numerous industries. It has done this through its scalable, modular automation platform, FlexChassis, which speeds up time to market while cutting costs. The company chose the XTS linear transport system from Beckhoff because of its speed, and modular design that allows for multiple configurations.

Read more...
Selecting the best remote access solution for your application
PLCs, DCSs & Controllers
In today’s Internet of Things (IoT) world, remote mobile access is a necessity for many industrial applications. There are several ways of implementing this connectivity with routers and virtual private networks.

Read more...
PLCs and PACs simplify data acquisition
PLCs, DCSs & Controllers
Data acquisition, data logging and data analysis are required functions for most modern industrial control systems. The simplest and lowest cost way to provide these functions is often by using the same platform providing real-time control, namely the PLC or the PAC.

Read more...
Automation tips for eco-friendly plastic packaging
Omron Electronics IT in Manufacturing
The urgent need to reduce plastic packaging to alleviate environmental strain is widely recognised. However, the benefits of plastics should not be completely overlooked. To address this, efficient and resource-saving usage is essential.

Read more...