Editor's Choice


Digital twins, science-fiction or reality?

June 2018 Editor's Choice

Industrie 4.0 introduces the somewhat abstract concept of a ‘digital twin’. But is this really new, does it actually exist anywhere in practice, and if so, what steps should be followed to build one?

A process control engineer who is already familiar with CAD, scada, process simulations, manufacturing systems and business (ERP) systems, may find the concept of a digital twin puzzling – after all integration of systems and process automation has been part of the goal of modern manufacturing for some time. So, what is new?

What is a digital twin?

A digital twin is a digital representation of a physical object, plant or process throughout its life-cycle. This digital representation can include original design information, physical attributes and context and usage information, which can in turn be used to model and predict performance.

A digital twin is not a product you can buy. Implementing a digital twin is going to be a journey during which you steadily implement platforms, capabilities, processes and human/machine interfaces. Beware, all roads don’t necessarily lead to Rome, so understanding your business strategy and how these new digital technologies will support this is important as to why a digital twin is needed, and what exactly has to be done.

Design, manufacturing and maintenance data

A digital twin is easiest to understand when considering a physical object, for example a car, or an engine, or an electronic device. The digital twin is a digital representation of this device; the data is initially developed and optimised during design, tracked during manufacturing and then augmented by actual usage data to improve use/maintenance of the object by customers:

• Design data relating to the object is created and optimised virtually using computer aided design and modelling technologies.

• Manufacturing data records the detailed production parameters, for example raw materials, third-party components used in assembly, quality, process conditions and so on.

• Use/maintenance data records how the object is actually used by customers in the field, when/how it is maintained, and so on.

Modern automotive manufacturing already has several of the above elements in place and is a leader in this regard. In other industries however, the digital twin might not be as straightforward.

A digital twin is not restricted to physical objects; it might be implemented for an entire manufacturing system, including physical plant and equipment, human decisions/activities, business processes, customer data, supply chain data, events, environmental information etc. The common thread is the connection, collection, organising, analysis, visualisation and interaction with vast amounts of data.

At the heart of the digital twin is a model that represents the attributes and operation of the system or object. But a digital twin is more than simulation software – a digital twin will usually include artificial intelligence that allows for self-learning. The output of the digital twin will be a rich interactive human machine interface, which uses for example 3D augmented /virtual reality to visualise and simulate performance.

Digital twins support the full product life-cycle in several ways:

• During design, digital twins will improve collaboration and allow product development teams to work virtually across multiple locations. Computer aided design and collaborative tools have existed for some time now. A digital twin builds on this but takes the concept further to support adaptive flexible manufacturing to quickly adapt to environmental conditions and individual customer requirements.

• During manufacturing detailed production information and small variants in the manufactured article will be measured and stored in the digital twin. For example in electronics manufacturing individual components used in assembly are often sourced from competing suppliers and will vary between batches. Tracing each component of the assembled product through design, manufacturing and ultimately during use/maintenance will allow for rich insights into how using different component suppliers affects the product performance in the hands of the customer.

• During use/maintenance, field data will likely be collected and analysed using IoT sensors. True predictive maintenance then becomes possible that will in turn enable more targeted and responsive service to customers.

Implementing a digital twin proof of concept

Implementing a digital twin can be confusing and overwhelming. I suggest that you consider starting small and do a proof of concept (POC). For example:

1. Research the opportunity in terms of your business strategy, do some planning, secure budget and build awareness and support for a POC.

2. Implement remote monitoring capabilities (this will probably need you to improve parts of your systems architecture, implement connectivity and data standards such as OPC-UA and ISO 10303-239, take on new IoT devices and build new capabilities in your IT and manufacturing systems teams).

3. Implement predictive analytics tools that will consume this remote data to self-learn and predict performance (this will likely require new capabilities in data science, modelling, artificial intelligence and visualisation).

4. Connect the result of the above to field service operations (this might require fundamental reorganisation of the established business processes in this area).

5. Close the loop by connecting the data and models back into new product development, design and engineering processes.

As you run this POC and as relevant technologies continue to mature in the market, you might also systematically introduce new human/machine interfaces and data visualisation tools, including 2D/3D visualisation, augmented reality and advanced human machine interfaces (natural language processing and natural user interfaces). Remember, the digital twin is not pure automation, it is intended to augment, not replace, human decision making.

Gavin Halse

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries.

For more information contact Gavin Halse, Absolute Perspectives, +27 (0)83 274 7180, [email protected], www.absoluteperspectives.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The thermal combustion balancing act
Editor's Choice
From carbon taxes to export tariffs, and cost containment to security of supply and sustainability, companies are under increasing pressure to switch to greener fuel sources. Associated Energy Services warns that this pivotal change has some potentially serious knock-on effects.

Read more...
What’s driving the IE3 motor revolution?
WEG Africa Editor's Choice
The International Efficiency 3 (IE3) motor standard will soon become South Africa’s legal minimum standard, mandating that local suppliers offer more efficient electric motors. What is driving this change, and how does it affect the many industries that rely on these modern electric workhorses?

Read more...
Unlocking the smart factory
ElectroMechanica Editor's Choice Motion Control & Drives
At ElectroMechanica, we recognise that transitioning to smart automation isn’t just about adopting new technology; it’s about solving real challenges. Labour shortages, rising costs and downtime due to outdated machinery make digital transformation essential for long-term competitiveness.

Read more...
Case History 197: Bad reboiler temperature control.
Michael Brown Control Engineering Editor's Choice Flow Measurement & Control
It is very important that reboiler temperature controls operate well in petrochemical refineries, or the product quality can really suffer. I was asked to check such a control in a refinery where they were having problems with one of these controls.

Read more...
The future of industrial automation: fieldbus and industrial networking
LAPP Southern Africa Editor's Choice
As a global leader in integrated solutions in the field of cable and connection technology, LAPP recognises that fieldbus and industrial networking technologies are pivotal in shaping the future of manufacturing and production processes.

Read more...
AI-driven innovations with CCTV and cyber security
RJ Connect Editor's Choice Fieldbus & Industrial Networking
The fast progress of artificial intelligence (AI) and video analytics is redefining the rail surveillance landscape. Advancements have bolstered proactive event detection, predictive maintenance and enhanced situational awareness.

Read more...
Loop signature 27: SWAG tuning of simple integrating processes.
Editor's Choice
The chief control engineer of one of the largest petrochemical refineries in South Africa once sent me an email after a course at his plant. He wrote that he had found the section on SWAG tuning of simple integrating processes one of the most informative of the whole course.

Read more...
Harnessing industrial AI agents for reliable automation
Editor's Choice IT in Manufacturing
The excitement around generative AI (GenAI) has been undeniable, promising wide-ranging changes across industries. However, for those of us in the world of industrial control and automation, the realities of implementing these powerful technologies are a little more nuanced.

Read more...
Futureproof your industrial network security with OT-centric cyber security
RJ Connect Editor's Choice
To achieve digital transformation, industrial operators must first address the daunting task of merging their information technology (IT) and operational technology (OT) infrastructure. In this article, we focus on the importance of strong OT network security and provide some tips on how to strengthen cybersecurity for industrial operations.

Read more...
The symbiotic relationship between OEMs and SIs
Schneider Electric South Africa Editor's Choice System Integration & Control Systems Design
While businesses tend to turn directly to original equipment manufacturers OEMs or vendors when embarking on IT projects, the role of the SI as a key facilitator and partner cannot be overstated.

Read more...