Industrial Computer Hardware


Servo terminals move a virtual ocean

August 2015 Industrial Computer Hardware

Norwegian oil company, Lundin Norway, recently presented its unique kinetic art creation at the ONS Energy Convention, the world’s largest offshore energy trade show. It comprised 529 Plexiglas tubes moving continuously together to simulate ocean waves and symbolised the constant search for oil under water off the Norwegian coast. The objective was to create a work of art that expressed the identity of Lundin Norway. This was a complex project, both artistically, mechanically and in terms of the control technology. Beckhoff supplied the control system for this engineering marvel.

The undulating virtual ocean waves were coloured from bright to saturated orange depending on the viewpoint and the density of the tubes staggered one behind the other. The multitude of overlapping translucent pipes created a moving landscape of organic, rock-like formations. If a person approached the installation, the virtual ocean landscape opened up. The tubes were driven to a safe position, allowing the viewer to ‘dive in’.

The mechanics and supporting structure consisted of a framework of 23 steel girders. Each steel girder was equipped with 23 honeycomb-shaped stainless steel housings, every one of which accommodated a Plexiglas tube, an AM8121 Beckhoff servomotor, a drive wheel and six support wheels for guidance, as well as a capacitive sensor for position compensation. A 3D depiction of an undulating sea was created based on a cleverly devised relationship between speed, tube diameter and the distance of the tubes from one another. These were implemented mechanically, with a total of 529 installed servomotors. The associated control electronics were located at both ends of the support structure and consisted of an EK1100 EtherCAT coupler and a set of I/O components. These included digital input terminals, servo terminals for controlling the servomotors and buffer capacitor terminals for stabilising the supply voltage.

A total of 10 200 connection points had to be processed, representing a challenge both mechanically and with regards to the control electronics. The compact design of the control and motion modules and the servo drives in a 12 mm terminal housing were a prerequisite for the successful technical implementation of the artistic concept.

The control system architecture encompassed three main components: the sensor and actuator level, consisting of EtherCAT terminals and specific safety sensors; the PLC level based on four C5102 industrial PCs, and the superordinate application level.

To enable the interaction between people and the kinetic sculpture, two overlapping sensor data levels were installed: a 40 m² capacitive sensor floor installed under the flooring and four K4W sensors (depth cameras) installed in each corner of the room. The higher-level control application was developed in openFrameworks. This provided a real-time model of the environment, for which a motion diagram was created to simulate the undulating movements.

The application communicated with the four IPC platforms, which also controlled the servomotors via TwinCAT ADS. Various open Frameworks add-ons were used. In addition to that the team of developers developed three new add-ons for ‘breaking the surface’. These were ofxMultipleKinect, controlling the display and alignment of several Kinect point clouds in the same co-ordinate system; ofxBeckhoffADS, facilitating the transmission of data between openFrameworks and the Beckhoff control platform; and ofxSensfloor, directing the communication and visualisation of sensfloor data in openFrameworks.

The set values of the motion diagram, which were programmed in C++, were imported into the TwinCAT NC PTP automation software via the ADS interface. In connection with the ultra-fast EtherCAT bus system and the servo terminals, the point-to-point axis positioning software calculated the position for each individual tube in a cycle time of 1 ms. An interpolating motion resulted, which the viewer perceived visually as natural undulation. If the sensors signalled a movement such as a person entering the ‘ocean’, then the axis positions of the undulation were overwritten. The position of the pipes in close proximity were adjusted to form a protective dome around the person moving around in the space. A thin metal ring attached on the inside of each tube gave a reference signal every time it passed the capitative sensor inside the drive unit. This made it easy and safe to double check and control the adjustment positioning algorithm which gave the exact position of the tube at any time.

To read the full story online visit http://motioncontrol.co.za/+beckhoff1

For more information contact Kenneth McPherson, Beckhoff Automation, +27 (0)11 795 2898, [email protected], www.beckhoff.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compact drive and control technology
Beckhoff Automation Fieldbus & Industrial Networking
When custom machine builder Lehnen Industrial Services introduced a filling machine for lip balm, the company was surprised by the amount of interest in this premium system. In order to meet this demand, they decided to standardise the machine. The necessary adaptability is provided by the scalable control technology from Beckhoff.

Read more...
Distributed servo drive system with extended voltage range and additional braking option
Beckhoff Automation Electrical Power & Protection
Beckhoff’s AMP8620 supply module and AMP8805 distribution module are now also available with an extended voltage range for the AMP8000 distributed servo drive system.

Read more...
Industrial PCs with new processor generations and increased performance
Beckhoff Automation Fieldbus & Industrial Networking
PC-based control technology from Beckhoff has always benefited from the convergence of automation and the IT world. Current examples include the use of the latest industry-standard processor generations, high-quality and demand-optimised flash memory, and the long-term availability version of Windows 11.

Read more...
New EtherCAT digital input and output terminals
Beckhoff Automation Fieldbus & Industrial Networking
The new EL14xx and EL24xx EtherCAT Terminals from Beckhoff complement the company’s existing broad portfolio in the area of digital input/output, and combine proven functions with an optimised circuit architecture.

Read more...
Monitoring system and motor status in real time with minimal
Beckhoff Automation Fieldbus & Industrial Networking
Beckhoff’s AM8000, AM8300, AM8500, AM8700 and AM8800 series servomotors are available with the innovative Beckhoff Smart System Diagnosis. With B/SSD, it is possible to monitor motors and systems in real time with minimal effort and to implement effective predictive maintenance.

Read more...
Safety controller for industrial PCs
Beckhoff Automation Fieldbus & Industrial Networking
With TwinSAFE, Beckhoff offers an extensive portfolio of software and hardware components for functional safety. This range is continuously being expanded and developed, as demonstrated by numerous new safety I/Os and the TwinCAT Safety PLC with EL6910 functionality.

Read more...
Improving mining efficiency with wireless telemetry
Omniflex Remote Monitoring Specialists Industrial Computer Hardware
Wireless telemetry systems are a critical tool in the mining industry as they facilitate automation, data collection, communication and remote monitoring and control in challenging environments. Ian Loudon, international marketing manager at wireless telemetry specialist, Omniflex explains how wireless telemetry systems can automate water pump monitoring and control in the mining sector.

Read more...
EtherCAT Box modules for confined spaces
Beckhoff Automation PLCs, DCSs & Controllers
Users of EtherCAT and EtherCAT P Box modules from Beckhoff’s EP and EPP series benefit from 25 years of IP67 expertise in the I/O sector. The broad product range for decentralised distribution of the I/O level directly at the machine or system has been continuously expanded and further developed during this time.

Read more...
EtherCAT power measurement terminal
Beckhoff Automation Electrical Power & Protection
Beckhoff’s EL3453-0090 EtherCAT power measurement terminal has voltage inputs for direct monitoring of powerful generators up to 690 V AC, such as those commonly used in the wind energy industry.

Read more...
Flexible and precise dispensing technology
Beckhoff Automation System Integration & Control Systems Design
The Scheugenpflug ProcessModule axis system forms the basis of Atlas Copco’s dispensing and screwing cells and a flexible integration platform for general contractors and machine builders. Precise process sequences are ensured by TwinCAT CNC and servo drive technology from Beckhoff.

Read more...