IT in Manufacturing


Essential data centre health checks

August 2013 IT in Manufacturing

At present, vendors are designing servers that can demand over 40 kW of cooling per rack. With most data centres designed to cool an average of no more than 2 kW per rack, innovative strategies must be used for proper cooling of high-density equipment.

According to Schneider Electric, just as an automobile benefits from regular servicing, a data centre needs to be kept operating at peak efficiency to maintain the business processes it supports and to prevent future problems. Before embarking upon expensive upgrades to the data centre to deal with cooling problems, certain checks should be carried out to identify potential flaws in the cooling infrastructure.

These checks will determine the health of the data centre in order to avoid temperature-related IT equipment failure. “They can be used to assess the availability of sufficient cooling capacity for the future,” says Eben Owen, E&S sales manager at Schneider Electric South Africa.

The current status should be reported and a baseline established to ensure that subsequent corrective actions result in improvements. A cooling system check-up should include these nine items:

1. Maximum cooling capacity: if there is not enough petrol in the tank to power the engine then no amount of tweaking will improve the situation. Check the overall cooling capacity to ensure that the IT equipment in the data centre does not exceed it. “One watt of power consumed needs one watt of cooling. Excess of demand over supply will require major re-engineering work or the use of self-contained high-density cooling solutions,” says Owen.

2. CRAC (computer room air conditioning) units: measured supply and return temperatures and humidity readings must be consistent with design values. Check set points and reset if necessary. A return air temperature considerably below room ambient temperature would indicate a short circuit in the supply air path, causing cooled air to bypass the IT equipment and return directly to the CRAC unit. “Check that all fans are operating properly and that alarms are functioning. Ensure that all filters are clean,” adds Owen.

3. Chiller water/condenser loop: check condition of the chillers and/or external condensers, pumping systems, and primary cooling loops. Ensure that all valves are operating correctly. Make sure that DX systems, if used, are fully charged.

4. Room temperatures: test temperatures at strategic positions in the aisles of the data centre. Owen explains that these measuring positions should generally be centred between equipment rows and spaced approximately every fourth rack position.

5. Rack temperatures: measuring points should be at the centre of the air intakes at the bottom, middle and top of each rack. These temperatures should be recorded and compared with the manufacturer’s recommended intake temperatures for the IT equipment.

6. Tile air velocity: if a raised floor is used as a cooling plenum, air velocity should be uniform across all perforated tiles or floor grilles.

7. Condition of subfloors: “Any dirt and dust present below the raised floor will be blown up through vented floor tiles and drawn into the IT equipment,” says Owen. “Under-floor obstructions such as network and power cables obstruct airflow and have an adverse effect on the cooling supply to the racks.”

8. Airflow within racks: gaps within racks (unused rack space without blanking panels, empty blade slots without blanking blades, unsealed cable openings) or excess cabling will affect cooling performance.

9. Aisle and floor tile arrangement: effective use of the subfloor as a cooling plenum critically depends upon the arrangement of floor vents and positioning of CRAC units.

Installation of the latest blade-server technology provides many benefits. However, these servers, if deployed as compactly as their size allows, draw two to five times the per-rack power of traditional servers and generate heat output that can easily cause thermal shutdown if proactive cooling strategies are not employed. Owen stresses that to avoid outright equipment failures, unexplained slowdowns and shortened equipment life, it is becoming critically important to implement a regular health check regime to ensure that cooling equipment is operating within the design values of capacity, efficiency and redundancy.

For more information contact Belinda Aslett, Schneider Electric SA, +27 (0)11 254 6400, [email protected], www.schneider-electric.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Protecting buildings’ embodied carbon with retrofitted systems
Schneider Electric South Africa Sensors & Transducers
The World Economic Forum has said that around 80% of the buildings in existence will still be around in 2050; it is therefore essential that in order to combat climate change we retrofit them for energy efficiency.

Read more...
Three decarbonisation myths and how organisations can debunk them
Schneider Electric South Africa Electrical Power & Protection
A UN Climate Change Report revealed that the world is on track to miss its 2050 net zero targets, with temperatures expected to increase by over 2,4°C by 2100. To help shift positive intent to concrete action, Schneider Electric outlined three of the most common myths surrounding decarbonisation and how organisations can get started on their decarbonisation journey.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
Rockwell Automation IT in Manufacturing
Rockwell Automation’s 10th State of Smart Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12 months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved