Editor's Choice


Strategic approaches to legacy software in manufacturing

September 2024 Editor's Choice IT in Manufacturing

One of the most critical and strategic roles of the CIO (or IT manager) is to ensure that the business’ information systems and tools are well maintained and up to date. Reliable software and hardware are both essential for providing timely, quality information that enables the business to function smoothly. If a critical system fails, the business could come to a standstill, forcing people to scramble, and revert to paper-based or backup systems. Even worse, production may stop, impacting the entire supply chain and all of your stakeholders.

Legacy software not only increases the risk of system failure or cyberattack, but also becomes more expensive to maintain, as specialised skills become scarce, critical spare parts are harder to source, and technical debt accumulates from workarounds.

The CIO is responsible for continuously assessing the underlying risk of such potential disasters. Typically, an IT modernisation programme involving a continuous cycle of refreshes and upgrades is necessary, with annual budgets allocated to support this process. CIOs are likely already familiar with this approach.

In some areas, the process of upgrading is relatively straightforward. By following vendor recommendations and consistently applying patches and upgrades, your business software is likely to remain reasonably up to date. Additionally, you may have a plan to upgrade hardware every three to four years, ensuring compatibility between new software versions and the hardware. Most companies have also by now transitioned to cloud-based software subscriptions, where much of the heavy lifting associated with upgrades and maintenance is managed by the service provider.

The difficulties associated with modernising process automation and control systems

However, when it comes to process automation and control, the situation becomes less clear. Scada and other process control applications are often overlooked in the upgrade cycle because they ‘just work’. Most commercial scada and related systems were designed to be inherently reliable, with stable hardware, operating systems, and applications. But over time, the backlog accumulates and the risks become unacceptable, necessitating action.

Because process automation and control systems are so specialised, it’s easy to separate them from the broader IT maintenance process. Because they just work, it is also easy to ignore the need to constantly update them. As a result, many scada systems, for example, are still running on outdated platforms like Windows XP and old versions of SQL Server, with the software applications themselves often being more than 10 years old and no longer supported by the vendor.

A proactive risk management process should identify potential risks, and establish plans to mitigate them. However, in practice, IT and OT risks are not always integrated into the same risk register, nor are they consistently managed. In the IT world, software modernisation must be proactive, as even a brief delay can leave systems highly vulnerable to cyberattacks. This urgency typically ensures that IT systems in a manufacturing company are kept up to date.

However, the same cannot be said for scada and process control systems. The prevailing philosophy is often “If it ain’t broke, don’t fix it”. Moreover, any change to scada or process control software carries the risk of production downtime if something goes wrong. Therefore, much more rigorous engineering change control processes must be in place when planning any upgrade to process automation systems. This approach requires substantial resources in terms of skills, budget and time.

Alternative modernisation strategies

Companies adopt various strategies for their software modernisation programmes, which can essentially be distilled into the following approaches. These strategies are largely based on Gartner’s recommendations.

Ringfence/encapsulate: This strategy involves ringfencing certain software functions and exposing them to other systems via an API. The ringfence ensures that the old software, along with its associated platform, is completely isolated behind a secure firewall. Once the application is ringfenced, and assuming no changes occur, there is theoretically no need to upgrade or maintain it further. The APIs can be implemented with rigorous cybersecurity protocols to control all information flows in and out of the ringfenced application. However, remember that it is not always possible to have contingency plans for the related hardware platforms, which are also prone to eventual failure. In some cases, it may be necessary to deploy the ringfenced applications on virtual machines on modern hardware, to try and replicate the legacy environment. However, for systems like DCS or PLC, where the hardware is an integral part of the overall system, virtualisation may not be feasible. The availability of spare parts and skills for older hardware platforms can also make this approach less valuable in the long term.

Rehost: This strategy involves moving the legacy software to a new, modern hosted infrastructure. The redeployment project itself will likely address many of the loose ends that pose a risk. Once the software is running and stable in its new environment, the new hosting environment can be maintained normally, thereby mitigating some of the risks associated with obsolescence.

Replatform: This involves upgrading the runtime platform, such as the operating system, database, middleware, and other components. This approach generally updates the software platform, without making fundamental changes to the legacy applications. Replatforming may require the ability to modify aspects of the source code, which will likely necessitate vendor involvement.

Refactor, rearchitect, and rebuild: This approach involves modernising the source code itself to make it more maintainable and usable. This strategy is typically only feasible for in-house, self-developed applications. However, the challenge here is that the in-house skills required for this process may no longer be available.

Upgrade: Incremental upgrades in arrears that follow the vendor’s recommended roadmap may be possible, allowing the legacy software to gradually become current. However, consolidating several upgrade projects into a single ‘big bang’ upgrade can make the task overly complex and disruptive. In such cases, it might be better to catch up by upgrading in stages, and accept that you will likely be using legacy software for several more years.

Replace: Finally, replacement is usually the most disruptive, yet arguably the most effective long-term approach. This involves completely removing the underlying application and replacing it with a new one. Many IT organisations are familiar with entire ERP replacement projects, which are typically highly complex, expensive, and disruptive. When it comes to control and automation software, a replacement project is also complex and potentially costly, requiring rigorous engineering controls to ensure the continued integrity of the applications. This is why the replacement option is often the hardest to justify in a real-life production environment.

These different approaches are not mutually exclusive; it may be more effective to adopt a hybrid approach that uses different modernisation strategies for different software and hardware platforms.

Getting started with modernisation

The starting point for any modernisation project is quantifying the risk factors and building the business case. This proactive exercise should coincide with the annual budgeting process. Any modernisation project in the process automation and control space must be meticulously managed, as it will directly impact operations.

Developing a consolidated IT and OT risk register is one practical first step towards quantifying these risks and ensuring that OT modernisation upgrades receive the necessary priority.

If modernisation is delayed, the business runs a very real risk of a major failure that could disrupt production and lead to significant financial and reputational losses. Dealing with failing DCS, PLC or scada hardware, or a legacy database or middleware layer that suddenly stops working, is a scenario no one wants to face. The specialised skills required to address such emergencies may be hard to find, and extremely costly. It’s far better to be proactive in this regard.

Conclusion

Managing legacy software in the manufacturing sector is a complex challenge that demands a strategic approach. Whether through ringfencing, upgrading, replacing or a combination of these strategies, companies must assess their specific circumstances and develop a plan that aligns with their long-term goals. By addressing the risks and costs associated with legacy systems, manufacturers can better position themselves to compete in an increasingly digital and interconnected world.


About Gavin Halse


Gavin Halse.

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part time to manufacturing and software companies around the effective use of IT to achieve business results.

For more information contact Gavin Halse, Absolute Perspectives, +27 83 274 7180, [email protected], https://www.linkedin.com/in/gavinhalse/




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
Case History 195: Unstable reboiler steam flow
Michael Brown Control Engineering Editor's Choice
A high-pressure steam flow control in a reboiler on a column in a petrochemical refinery continually cycled when placed in automatic. Several attempts had been made to tune the controller, but these had been unsuccessful.

Read more...
Open control system for retrofit of conveyor control system
Beckhoff Automation Editor's Choice
For every online retailer, warehouse logistics is part of the critical infrastructure. An Australian office equipment supplier has retrofitted the warehouse logistics installation of its central warehouse, and replaced the proprietary decentralised controllers of the conveyor lines with PC-based control from Beckhoff, based on powerful EtherCAT communication.

Read more...
Digital industrial platforms and why they are important
Editor's Choice
One of the most significant trends driving digital transformation is the emergence of digital industrial platforms. This article will briefly explore what digital industrial platforms are, why they are important, and how they might shape the future of industrial automation.

Read more...
Celebrating 65 years: rebuilding and redefining its legacy
Editor's Choice News
Founded in 1959 by Neill Simpson, Axiom Hydraulics has grown into one of South Africa’s elite hydraulic companies. Over the past six and a half decades they’ve weathered many challenges, but none as devastating as the fire of 2023.

Read more...
Young robotics team takes world title
igus Editor's Choice News
In an inspiring demonstration of innovation and teamwork, Texpand, a young South African robotics team, recently made history by winning the 2024 FIRST Tech Challenge World Championships.

Read more...
SAIMC: It’s not black and white
SAIMC Editor's Choice SAIMC
Grey imports are a problem worldwide, not least in the automation industry in South Africa. The Supplier Advisory Council (SAC) operates under the umbrella of SAIMC, and is tackling this problem head-on.

Read more...
Loop signature 25: Tuning part 3 - Results of tuning a particular simple self-regulating process by several different methods.
Michael Brown Control Engineering Editor's Choice
A couple of SWAG methods of tuning were given in the previous Loop Signature article. I have tuned a simple self-regulating process using those methods, and two other tuning methods, one of them being the sophisticated Protuner tuning package, which is the system I employ. The tests were performed on a very accurate and powerful simulation package, and the results are compared below.

Read more...
PC-based control for advanced hydrogen storage technology
Beckhoff Automation Editor's Choice PLCs, DCSs & Controllers
The proportion of renewable energies from solar, wind and water is rising continuously. However, sufficient storage options are of the essence to use these energies as efficiently as possible. GKN Hydrogen offers a particularly compact and safe option, low-pressure metal hydride hydrogen storage systems with PC-based control from Beckhoff.

Read more...