Editor's Choice


Into the future with green hydrogen

Technews Industry Guide: Sustainable Manufacturing 2024 Editor's Choice Electrical Power & Protection

German company, Pepperl+Fuchs is a pioneer and innovator in explosion

protection and industrial sensor technology. SA Instrumentation & Control’s editor caught up with Marc Van Pelt, managing director of Pepperl+Fuchs South Africa, to find out more about the company’s involvement in sustainable manufacturing, and especially green hydrogen.


Marc Van Pelt, managing director of Pepperl+Fuchs South Africa.

Van Pelt paints an exciting picture of the future of green hydrogen and its potential to transform South Africa’s economy and energy outlook. In a wide-ranging interview, he shares insights into how his company’s technology is contributing to this emerging industry, and why South Africa is uniquely positioned to become a global leader in green hydrogen production.

South Africa has the resources

He outlines the key elements needed for green hydrogen production: desalinated water, and energy from either wind or solar power or both. South Africa’s 3000 km coastline offers many opportunities for wind energy and water desalination, while its abundant sunshine makes it ideal for solar power generation. “Hydrogen is already used in multiple production processes in the country today, but it’s not green,” he notes. “Sasol, for example, is one of the world’s largest hydrogen consumers, and highest CO2 emitters. This needs to change.”

The Pepperl+Fuchs contribution

He adds that Pepperl+Fuchs strives to be at the forefront of technology, with automation and digitalisation forming the backbone of its drive to implement more sustainable manufacturing practises around the globe in line with the 2015 Paris agreement. At the heart of the company’s operations are its industrial sensors and explosion protection divisions. These areas are also critical in the production of green hydrogen. Its involvement spans the whole value chain, from solar and wind energy generation to desalination, through to storage and transport, and to downstream applications.

In solar energy production, Pepperl+Fuchs inclination sensors ensure that the solar panels are positioned optimally relative to the sun. These sensors feed data to the automation systems, which then adjust the panels throughout the day for maximum efficiency. In wind turbines, its sensors position the turbines and blades correctly to maximise energy production. They measure wind speed and blade angles, which are essential for optimal performance, and they also contribute to condition monitoring of the blades. This technology supports wind farm projects like those around Gqeberha that supply electricity to the Volkswagen plant in Kariega, for example.

The application of these sensors is not limited to energy production, but also extends to the electrolysis process essential for hydrogen production. The company collaborates with other industry giants like Honeywell, contributing to projects like the desalination plant in Ghana that feeds water to the whole of Accra.

There’s a lot going on

There are a number of green hydrogen projects in progress in South Africa and Namibia, and Van Pelt highlights a few. These involve significant investment from both local and international players, indicating growing confidence in the potential of green hydrogen. He is particularly excited about the potential for South Africa and Namibia to collaborate.

One large-scale project is being developed in Boegoebaai in the Northern Cape, where the government, in collaboration with Sasol, is developing a new port to support green hydrogen production using fresh water from the Orange River. This avoids the need for desalination, making the process more efficient and cost effective.

Van Pelt describes another notable green hydrogen project where Pepperl+Fuchs is involved. This is in Namibia’s Sperrgebiet, which is also an area that is ideal for solar and wind energy. The project aims to produce green hydrogen for export to Europe via Antwerp, Belgium. The $10 billion investment by the Namibian government, along with international investors, including the Belgian company Compagnie Maritime Belge (CMB), is expected to have its pilot plant operational by year end. It involves not only Pepperl+Fuchs sensors but also its explosion protection technology for safe transport. The green hydrogen generated will also be used as fuel for the container ships, reducing reliance on traditional fuels. The new Boegoebaai port will connect via pipeline to the Sperrgebiet area, facilitating joint development between the two countries.

The transport and storage challenge

Storing hydrogen safely and efficiently is the next significant challenge, and Van Pelt delves into the complexities. Safety is paramount, and explosion protection is crucial. Hydrogen is the most explosive gas on earth, and this is where Pepperl+Fuchs’ expertise in explosion protection, gained in natural gas, comes into play, as the company specialises in creating products that can safely handle hydrogen. This will become crucial as green hydrogen production scales up globally. Van Pelt puts it into perspective: “If you drop a metal bolt on a concrete floor, it will produce a spark. That tiny 20 μJ spark, smaller than the head of a needle, has sufficient electrical energy to make liquid hydrogen explode. On the other hand, you can heat it up to 571°C without a problem.”

Ammonia as a carrier

Transporting it also presents logistical hurdles. Like LNG, hydrogen needs to be liquefied for efficient transport, requiring a temperature of -253°C, an energy-intensive process. As a result, there’s a growing interest in green ammonia for transportation. This can serve as a carrier for hydrogen, offering a means of storing and transporting it efficiently. It’s already traded in high volumes worldwide. Currently, about 20 million tons of ammonia are transported by sea each year. So companies can circumvent the challenges associated with hydrogen storage and distribution by converting green hydrogen into green ammonia.

Van Pelt discusses its potential as a carrier for hydrogen, highlighting its advantages in terms of energy density. It also requires less energy to liquefy than hydrogen. It can be used directly as a fuel or split back into hydrogen at the destination. “This makes green ammonia a viable solution for transporting hydrogen over long distances, leveraging existing infrastructure,” he explains.

The downstream opportunities

He adds that the importance of green hydrogen for South Africa is twofold. Firstly, we could become one of the world’s largest green hydrogen producers. Secondly, on the domestic front, green hydrogen could run our power stations, replacing coal and natural gas in the long term. The potential for green hydrogen also extends beyond energy production. There is potential in other areas, such as transportation, industrial processes, and even as a feedstock for other chemicals and fuels.

“Globally, we have the largest reserves of platinum, which is a key component in fuel cells. I’m not only talking about cars, I’m talking bulk transport, including ships, buses and locomotives,” he says. “This is already happening on the mines, where Angloplatinum has the world’s largest hydrogen-powered mine haul truck at its Mogalakwena PGM mine in Limpopo.”

Another project which is already under way is a collaboration between Sasol and Toyota to produce sustainable aviation fuel at Sasol’s Secunda plant. Van Pelt says that the plan is for synthetic kerosene produced using green hydrogen to power aeroplanes travelling to Europe, with Lufthansa being the pioneer here. And in the Green Corridor project, Sasol and Toyota are developing a hydrogen fuel cell-powered truck that can drive between Durban and Johannesburg. Its range will be just right for the 600 km driving distance.

Challenges

Van Pelt doesn’t shy away from discussing the challenges. He emphasises the need for education and skills development to prepare the South African workforce for this emerging industry. “You can attract investors, but if you don’t have educated people to execute the projects you’re not there,” he warns. He also highlights the need for a just transition, particularly for the 90 000 workers currently employed in our coal mines who stand to lose their jobs.

In all this, the economic viability of green hydrogen production is crucial, with a global target of $2 per kilogram. Van Pelt believes that South Africa can meet this benchmark.

A new era

Despite the challenges, he is optimistic about green hydrogen’s potential to transform South Africa’s economy and energy landscape, while contributing to global sustainability goals. He paints a picture of a future where South Africa is not just a consumer of energy, but a major producer and exporter of clean energy. From powering vehicles and trains to fuelling aircraft and providing electricity to homes and industries, green hydrogen could revolutionise South Africa’s energy landscape.

For Pepperl+Fuchs, this means providing sensors and explosion protection for the entire supply chain, from energy production to safe storage and transport, to downstream applications. But Van Pelt’s vision for the company goes further. He sees it contributing to the green hydrogen industry as a driver of economic growth, job creation, and technological innovation. His message is clear: the green hydrogen revolution is coming, and South Africa has the potential to be at its forefront. The question is whether the country can seize this opportunity and turn its natural advantages into economic and environmental benefits. “Together with Namibia, we can become the Saudi Arabia of green hydrogen. We have all the cards. It’s just a matter of taking them and playing the right game,” he concludes.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Pepperl+Fuchs Channel Partner Conference
Pepperl+Fuchs News
Pepperl+Fuchs recently hosted its Channel Partner Conference. Under the theme ‘Together, Breaking Ground in Africa’, the conference served as both a celebration of partnerships and a strategic forum focused on future growth.

Read more...
Loop signature: Tuning part 4 processes
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The purpose of this particular article is to try and give those unfortunate enough to have to use SWAG (scientific wild ass guess) tuning a bit of an idea of how to go about it, and even more importantly some understanding of a couple of basic principles.

Read more...
EtherCAT and PC-based control elevate next-generation laser cutting machine
Beckhoff Automation Editor's Choice
Cincinnati Incorporated has been building sheet metal processing equipment for 125 years. Since the switch to PC-based control, the only limits to development have been physical.

Read more...
Ensure seamless integration and reliable performance with CANbus solutions
RJ Connect Editor's Choice Fieldbus & Industrial Networking
Modern industrial applications require robust and effective communication. The CANbus product range guarantees smooth integration and data transfers throughout systems.

Read more...
Pepperl+Fuchs celebrates a decade in Africa
Pepperl+Fuchs News
Pepperl+Fuchs is well known by customers around the world as a pioneer and innovator in industrial sensors and explosion protection.

Read more...
Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...
Local range of planetary units
SEW-EURODRIVE Editor's Choice Motion Control & Drives
As SEW-EURODRIVE South Africa actively extends its offerings to customers, the SEW PPK and SEW P2.e industrial gearbox ranges are good examples of solutions that are well suited to the local business environment.

Read more...
Digitalised recycling systems
ifm - South Africa Editor's Choice
The EREMA Group develops and produces plastics recycling systems. The approximately 7500 active plants worldwide have the capacity to produce more than 20 million tons of recycled granulate. With up to 80 vibration sensors per system, EREMA relies on sensor technology and IO-Link masters from ifm to control the manufacturing process.

Read more...
VEGA fights incorrect measurements
VEGA Controls SA Editor's Choice
VEGA’s 80  GHz radar sensors, with their 120 dB dynamic range, ensure full visibility in all process conditions, overcoming interference and obstacles that standard sensors find challenging.

Read more...
Helping mining customers achieve balance
Endress+Hauser South Africa Editor's Choice
The mining industry faces several ESG challenges, particularly in relation to water stewardship, water licensing, water quality monitoring, and emission monitoring. Fortunately, Endress+Hauser is well positioned to help mines achieve their commitments in these areas.

Read more...