Electrical Power & Protection


Zinc batteries for renewable energy storage

Technews Industry Guide: Sustainable Manufacturing 2023 Electrical Power & Protection

Zinc-based batteries are a new energy storage and conversion technology with significant potential for renewable energy applications, according to Simon Norton, executive director of International Zinc Association (IZA) Africa. The technology has attracted attention due to its high theoretical energy density, safety, abundant resources, environmental friendliness and low cost. In recent years considerable effort has gone into improving the performance of zinc-based batteries. Battery cycle life and energy efficiency can be improved by electrolyte modification and the construction of highly efficient rechargeable zinc anodes.

The global risk posed by climate change and the resultant energy crisis due to the excessive use of traditional fossil fuels have spurred the development of renewable energy sources. Therefore, the sustainable development of clean energy globally is critical. Renewable energy sources such as solar, tidal and wind power all have their role to play. However, the intermittent and regional characteristics of renewable energy means that large-scale power generation and long-distance transmission projects are cost prohibitive. Thus, developing highly efficient energy storage and conversion technology is important to achieve effective utilisation and distribution of renewable energy to solve the issue of energy storage.

The researchers point out that lithium-ion batteries (LIBs) dominate the energy storage market at present due to their high capacity. Nevertheless, thermal stability, destruction of electrode structures, flammability of organic electrolytes and the lithium anode, high cost and low specific energy density significantly limit their large-scale commercialisation.

In contrast, aqueous batteries, including zinc/nickel (Zn/Ni), zinc/manganese (Zn/Mn), iron/nickel (Fe/Ni), and iron/cobalt (Fe/Co), have the advantages of low cost, environmental friendliness, and high ionic conductivity. Compared with iron and manganese, the slow hydrogen evolution of zinc in aqueous electrolytes eliminates the risk of fire. More importantly, metal zinc possesses outstanding electrochemical properties, such as a relatively low redox potential, an outstanding specific volumetric capacity, and a high theoretical capacity.

In terms of Zn-ion batteries (ZIBs), safety, high zinc abundance, and a simple assembly process promise large-scale energy storage application. Metal zinc has been used as an anode material since 1799. Zinc-based battery technology accounts for a third of the global battery market. Zinc can be used in Zn-air batteries (ZABs) and Zn-ion and Zn hybrid batteries.

Many companies have already been deploying ZABs for utility-scale energy storage. For example, NantEnergy installed 3000 systems in nine countries in 2019 at $100/kWh. These ZABs with a half-open structure use oxygen directly from ambient air as a cathode reactant, which can exhibit high capacity and energy density. They have a high theoretical specific energy density that is about five times greater than LIBs and are far less expensive. However, the achievable battery lifetime is about 150 cycles under current practical conditions, while the round-trip energy efficiency is usually under 60%, way below commercialisation requirements.

Zinc-based batteries tend to have poor cycle life, low coulombic efficiency (CE), and capacity fading. This is due to uncontrolled growth of zinc dendrites, insulation and discharge products with poor reversibility, and continuous consumption of electrolytes. The operation of ZIBs is based on the stripping and plating of zinc on the anode, zinc ion insertion, extraction and conversion reactions at the cathode, and zinc ion transfer between the cathode and anode. However, ZABs only involve stripping and plating of Zn on the anode in aqueous electrolytes. During charging, zinc ions are redeposited on the zinc anode without the added complication of replacing battery components. Generally, the poor reversibility of the zinc anode and thermodynamic instability are the main obstacles to the commercialisation of zinc-based batteries.

Widely reported research has focused on zinc anode modification, cathode material design, and electrolyte development and improvement. Here the zinc anode has shown compatibility with both aqueous and non-aqueous electrolytes. Aqueous electrolytes have excellent ionic conductivity, non-flammability, easy battery assembly, and non-toxic properties. However, the thermodynamic instability of the zinc anode causes severe challenges, including shape change, passivation, zinc dendrites, and hydrogen evolution reaction (HER). Similar to the Li anode, side reactions consume the zinc anode and electrolyte, resulting in low CE. For organic electrolytes, non-flammable electrolytes are often employed to reduce flammability, while corrosion is minimised thanks to their thermodynamic stability.

“Over the past decade, significant progress and exciting breakthroughs have been achieved in designing anode structures, applying additives, and exploring alternative electrolytes to further commercialise zinc-based batteries,” say the researchers. “Overall, zinc plays a vital role in renewable energy. It stands to enable the development of low cost, green energy storage technologies, in addition to its contribution in the area of solar panels and wind turbines,” concludes Norton.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Half brick second generation converter
Vepac Electronics Electrical Power & Protection
The Supreme series half brick second generation converter from Vepac is composed of isolated, board-mountable, fixed switching frequency DC-DC converters that use synchronous rectification to achieve extremely high power conversion efficiency.

Read more...
Multimeters: the perfect entry-level choice
Comtest Electrical Power & Protection
Experience the precision, durability and safety of professional-grade test tools with the entry level Fluke 15B+ and 17B+ digital multimeters.

Read more...
South Africa can become an important EV manufacturer
Electrical Power & Protection
A year ago, South Africa was mired in loadshedding, with the importance and relevance of electric vehicles (EVs) far from the public imagination. Fast forward a year and much has changed

Read more...
Self-contained standalone lightning warning system
Senseca Electrical Power & Protection
Biral, now part of the Senseca Group, and a specialist in environmental and meteorological measurement instrumentation, has launched its BTD-200 lightning warning system, which is a complete detection and warning system.

Read more...
Compact, high density power protection system for AI, data centre and large-scale electrical workloads
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new Galaxy VXL – a highly efficient, compact, modular, scalable and redundant 500-1250 kW (400 V) 3-phase uninterruptible power supply (UPS), complete with enhanced cybersecurity, software and safety features.

Read more...
Taking the pain out of panel building
Omron Electronics Electrical Power & Protection
Panel building stands as a cornerstone of industrial automation, shaping the efficiency and reliability of automated systems across different and diverse industries, from manufacturing to infrastructure. Omron leverages over 80 years of experience to furnish OEMs and builders with cutting-edge control panel solutions.

Read more...
Powerless is not an option
Electrical Power & Protection
When the power goes out it is important for commercial and tertiary facilities to be able to keep essential electrical equipment running. UPS systems are critical for transitioning and emergency backup power.

Read more...
High-performance surface inspection systems for battery production
Electrical Power & Protection
As battery manufacturers increase their focus on yield optimisation to meet growing demand, AMETEK Surface Vision is highlighting the essential role of processes to improve quality and reduce defects.

Read more...
Securing the power supply
Electrical Power & Protection
Grid management systems are the linchpin of modern transmission and distribution networks. To understand the intricacies of grid management, it is necessary to unpack its core components: scada systems, energy management systems, outage management systems and wide area management systems.

Read more...
Powering sustainable mining operations in Africa
Electrical Power & Protection
Africa’s mining sector is at a crossroads and, as the industry grapples with mounting pressure to drive operational efficiency within the boundaries of sustainability, natural gas is emerging as a compelling solution.

Read more...