Editor's Choice


Keeping an eye on production down to the last detail

January 2023 Editor's Choice IT in Manufacturing

When it comes to evaluating production in a manufacturing plant, an individual analysis of each piece of equipment is not enough. More often than not, the process of calculating characteristic values calls for an understanding of the bigger picture, which is precisely where Beckhoff’s TwinCAT Analytics comes in. This tool makes it easy to adopt a more comprehensive approach to calculating key production figures and monitoring equipment. With the corresponding engineering carried out entirely by the machine builder or system integrator, this opens up a whole new spectrum of data-based business models.

Image copyright: Beckhoff.
Image copyright: Beckhoff.

TwinCAT Analytics maps a complete workflow for achieving these all-important goals, ranging from data acquisition and communication, through data storage, sifting and analysis, to the continuous analysis of machine and plant data via a web-based dashboard. Those who have the most to gain from this workflow are machine builders and system integrators on the one hand, and end users on the other. For those involved in the backend, the acquisition, communication, storage, and data analysis steps are particularly important. As for the end users, it is not just the analysis itself that is relevant, but also the way it is prepared in the form of dashboards with corresponding notification systems.

Workflow openness and simplicity

The software can be used across all sectors of the manufacturing industry and beyond, since it is also possible to analyse information such as building data. Even significant differences in sampling rates ranging from microseconds to a few seconds can be combined within a single analysis.

In addition to PC-based control technology from Beckhoff, data from third-party systems can also be acquired via corresponding gateways, with OPC UA serving as the downward interface. Furthermore, the openness of TwinCAT means that many other bus systems can be connected to TwinCAT Analytics in addition to EtherCAT, which is what makes the comprehensive approach to production environments possible in the first place. The TwinCAT Analytics devices also benefit from highly flexible communication capabilities via the IoT communication protocol, MQTT.

Perhaps the most essential contributor to a well-founded analysis is reliably stored machine and production data. This backup can be performed directly on the machine’s control computer, on an on-site server computer or edge device, or even in a cloud system, allowing customers and end users to decide for themselves where the data should be stored. To achieve maximum performance, especially in the case of high-resolution sampled data, the information is communicated and stored in a binary format without compromising on openness.

The data can be converted into readable data formats such as csv, either manually using tools, or automatically. For even more demanding tasks, a data API is available to the data services applicators. Not only is an API capable of collecting data from the TwinCAT Analytics workflow in plain text, but it can also feed any relevant data into the workflow. Functions like these make it possible to transfer information to third parties – for example, if certain machine components are to be analysed in more detail directly by suppliers themselves.

In terms of engineering, a variety of algorithms can be used to analyse the communicated data in just a few clicks, with the spectrum ranging from simple to comprehensive. Simple piece counters and cycle time monitoring, or key figures such as overall equipment effectiveness (OEE), can be calculated in the same way as, for example, frequency spectra, clustering procedures or dynamic time warping for finding correlations. The option is also available to integrate machine learning models, which is where the TwinCAT Machine Learning inference products come into play.

All algorithms and models can be structured in networks, making it possible to map hierarchies of individual components and machine modules, as well as entire machines, systems and production sites through to multiple locations. Once created, it is even possible to save these analysis networks as templates so that they can be quickly reused from one application to the next. This feature is particularly useful when an analysis has been developed for recurring components or machine modules – for example, for an energy measurement task or condition monitoring of a drive axis, fan or spindle.

Wizard support for a customised dashboard experience

The integrated software wizard in the TwinCAT Analytics Workbench provides assistance with creating continuous data analyses and can be used to automatically generate a one-click dashboard. As its name clearly suggests, this dashboard can be easily customised with the user’s own logos, header colours, background images and themes, as well as different languages, without any programming effort.

The functions are all based on the comprehensive options offered by TwinCAT HMI. User management, for example, is integrated into the dashboard generation process. It is even possible to map different roles for end users, allowing machine operators, production and plant managers, and managing directors alike to access the information they need in the HTML5-based dashboard. This feature is platform-independent, which means that the dashboard can be used on a machine control panel, an office PC or even a mobile device.

The tile-based design used by TwinCAT Analytics is the ideal choice for creating a responsive interface. Raw data, including states or temperatures of machine parts, can be displayed in the dashboard alongside analysed data, such as the number of pieces produced per minute or quality indicators. Appropriate HMI controls can be selected for all data, whether that is tables with colour-coding, individual tiles with count values, pie and bar charts, trend line charts with fast range switching, or animated tiles displaying minimum, maximum and average values.

It can also be ideally tailored to the respective application, as with the Sankey diagram, which is classically used in the field of energy flow evaluation. Here, for example, the data of the EL34xx power measurement terminals can be used to optimum effect. In addition to identifying loads, these EtherCAT terminals can also be used to determine demand peaks and make statements about the condition of electrical components as a further condition monitoring feature.

Greater runtime flexibility

The dashboard enables users to switch data sources in runtime mode. The option is available to display both live and historical data side by side; however, once a particular dashboard configuration has been set up, it is unlikely that this will always be suitable for every user role going forward. With this in mind, the TwinCAT Analytics dashboard now offers a range of new interactive functions.

Depending on the respective user, the dashboards can be customised further still during runtime within the web browser. HMI controls can be shown and hidden, and their position and size can be changed. The individually selected theme and language can also be saved for each user. In the future, there will be an interactive chart available, which can be easily added to any dashboard page during runtime and freely configured with data from different sources – for example, it will be possible to superimpose consumption data from different time periods. Users can also adjust the display format in the chart and switch from line to bar charts or similar representations. For these changes, it is no longer necessary to return to the engineering mode.

The dashboard and its data displays are far from being the end of the data processing functions. The reporting functionality, which is also new, makes it possible to summarise raw or processed data into reports in an automated way, based on scheduled times or triggered by particular events. This information can then be output as a PDF, JSON or HTML file. Individual headers can be added depending on the particular application, which for test bench applications might include the test item number, test procedure description and test duration.

The user data itself can be listed in tabular form, charts or simple labels. The function is therefore also suitable for simply recording daily production and building data, and the time-consuming process of manually filling out lists can be completely eliminated. With the integrated email function, a report can also be used to implement a notification system. It is through functions such as these, and the simplified workflow they afford, that TwinCAT Analytics represents an undeniable asset when it comes to accelerating the digitalisation process.

For more information contact Dane Potter, Beckhoff Automation, +27 79 493 2288, [email protected], www.beckhoff.com/en-za/



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New addition of motor module to intelligent transport system
Beckhoff Automation Motion Control & Drives
The new XTS EcoLine motor module allows for even more cost-effective use of intelligent product transport systems from Beckhoff.

Read more...
Cost-effective drive technology for low-demand applications
Beckhoff Automation Motion Control & Drives
With the AF1000, Beckhoff now also offers a variable frequency drive presenting a cost-effective solution for basic drive applications, including conveyor systems, pumps and fans.

Read more...
Economy servo drive for low- to mid-range power requirements
Beckhoff Automation Motion Control & Drives
The new AX1000 from Beckhoff is a highly optimised servo drive that is fully integrated into the TwinCAT system.

Read more...
PC-based control technology for DNA tests in livestock farming
Beckhoff Automation Motion Control & Drives
New Zealand has been at the forefront of technological development in agriculture for years. A recent example involves the use of SNPshot DNA tests, which harness the latest technology from Beckhoff to meet the needs of farmers who take samples in the field, and DNA laboratories that process the samples.

Read more...
Controlling runtime and engineering with a leap in performance
Beckhoff Automation Fieldbus & Industrial Networking
Beckhoff is enabling a real leap in automation technology performance with TwinCAT PLC++. Both engineering and runtime can be accelerated, while the well-known TwinCAT advantages of consistent integration, compatibility and openness continue to be delivered.

Read more...
Loop signature: Tuning part 4 processes
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The purpose of this particular article is to try and give those unfortunate enough to have to use SWAG (scientific wild ass guess) tuning a bit of an idea of how to go about it, and even more importantly some understanding of a couple of basic principles.

Read more...
EtherCAT and PC-based control elevate next-generation laser cutting machine
Beckhoff Automation Editor's Choice
Cincinnati Incorporated has been building sheet metal processing equipment for 125 years. Since the switch to PC-based control, the only limits to development have been physical.

Read more...
Ensure seamless integration and reliable performance with CANbus solutions
RJ Connect Editor's Choice Fieldbus & Industrial Networking
Modern industrial applications require robust and effective communication. The CANbus product range guarantees smooth integration and data transfers throughout systems.

Read more...
Innovative separation of recyclable materials
Beckhoff Automation Fieldbus & Industrial Networking
A plant built by Belgian specialist machine builder, Absolem Engineering features an innovative process for separating recyclable materials. Using PC-based control from Beckhoff, a major problem has been elegantly solved - the generation of different signal sequences for the exact synchronisation of different camera systems.

Read more...
Connecting every transport node
RJ Connect Editor's Choice Data Acquisition & Telemetry
Stockholm's bus system strategically links urban mainline, suburban mainline, non-mainline routes, community service buses and night buses. To acquire and process data from multiple sources and analyse onboard information on their moving buses, Transdev sought a dependable and powerful onboard computer. It teamed up with CatAB, Moxa’s local representative, known for delivering top-notch industrial data communication boards and equipment since 1988.

Read more...