Editor's Choice


When safety instrumented systems and inadequate operators collide

September 2022 Editor's Choice

A safety instrumented system (SIS) is intended to reduce the risk of a harmful incident. This is achieved using a combination of hardware and software controls implemented on every unit in operation. A layered approach to protection is usually followed. Examples of instrumented controls include hardwired trip systems, interlocks and alarms.

Minimising the risk of failure

Containing the residual risk requires each of the control measures to be effective. During the design phase, teams of engineers and subject matter experts will perform a systematic analysis of the process to identify each possible hazard and then identify what controls need to be in place. The HAZOP is an example of such a technique.

Whichever method is used, it is worth remembering that the SIS itself can fail. We need to eliminate, as far as possible, the risk of underlying process failure coinciding with SIS failure, thereby leading to an incident. There are techniques for quantifying the reliability of SIS systems so that the real risk is adequately understood and mitigated. One example is the Safety Integrity Level (SIL) analysis.

Engineers tend to focus on physical equipment and not people

As instrument and automation engineers, we are trained to be comfortable with physical systems – but less so with systems involving people. When we review the causes of a significant incident, it is tempting to point to a hardware device as the underlying root cause of the failure. We tend to gloss over the importance of humans in the sequence of events that led up to such failure.

The consequences of people getting it wrong

In March 2005, the BP Texas City Refinery experienced a significant safety incident that resulted in 15 fatalities and 180 injuries, after a “geyser of flammable hydrocarbon liquid and vapour erupted from a blowdown stack, creating a huge fire”. Inexperienced operators had continued pumping flammable feedstock into the raffinate tower.

During the engineering design, the HAZOP and LOP (layer of protection) analysis should have picked up the scenario where liquid could be pumped for an extended period into a unit in operation without observing a rise in levels. Whether or not this possibility had been identified, the systems must have failed because, at the time, no alarm alerted the operators of what was happening, and the pump did not trip.

The investigation report made a very insightful observation. It noted that it is easy to identify the physical device that failed and that subsequently led to the incident. Investigators are prone to locate the person most closely associated with the failure of that device, be they operators, maintenance personnel, managers or others. The investigation often recommends a simple technical solution: fix the device, add some more SIL hardware and all will be well.

In the BP Refinery incident, the investigation concluded that there were more underlying problems than just the physical safety integrity system. The issues also lay with poor training and inexperienced people. This, combined with poorly maintained and deteriorating equipment, led to a high-risk situation that was an accident waiting to happen. In addition, while the plant’s deteriorating condition was understood to be a risk, fixing this would have required an extended shutdown, resulting in significant shareholder pain. The record will show that the shutdown did not happen in time.

Is it time to share our lessons learned between IT and OT?

IT managers and CIOs are all too familiar with system failure. Some would argue that this is due to a lack of proper methodology and discipline. However, as with industrial operations, IT projects rarely fail owing only to a technical issue. IT projects are particularly challenging because people need to change how they do things to take advantage of the system.

It occurred to me that this hard-earned experience from the world of IT can also be applied in the operations environment. With the convergence of IT and OT, best practices from the respective disciplines can be shared in ways that previously might not have been obvious.

Poor training and inexperience are disastrous in the world of IT projects – even more so when operating a hazardous refinery. Is it not time to get our heads together and come up with a more holistic solution that incorporates both the physical and engineering aspects, as well as the people factors, to keep our plants running safely and reliably?


About Gavin Halse


Gavin Halse.

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part time to manufacturing and software companies around the effective use of IT to achieve business results.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Iritron and Schneider Electric expand strategic mining partnership
Iritron Editor's Choice News
Iritron and Schneider Electric are rapidly expanding their Mining, Minerals & Metals partnership across key mining regions in Africa.

Read more...
The role of analogue gauges in a digital world
SA Gauge Editor's Choice Pneumatics & Hydraulics
With so much focus on digital systems, remote monitoring and automation, it’s easy to assume that traditional analogue gauges have become outdated. Yet if you step into almost any plant, mine or processing facility, you’ll still find them in daily use, quietly doing their job without fuss.

Read more...
Case History 200: The final case history – desuperheater control problem.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
For this final article I have chosen to relate a problem that existed in a desuperheater temperature control on a boiler in a petrochemical refinery.

Read more...
PC-based control technology in additive manufacturing
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
As an open control platform, PC-based control supports different engineering approaches, including low-code programming. The machine builder, Additive Industries uses this to create the code for the TwinCAT runtime of its 3D printers.

Read more...
SEW-EURODRIVE drives innovation at automotive plant
SEW-EURODRIVE Editor's Choice Motion Control & Drives
[Sponsored] A major automotive manufacturer in Gauteng has boosted its operational efficiency, safety and energy savings with the installation of SEW-EURODRIVE’s advanced MOVIGEAR mechatronic drive system in its newly expanded buffering zone.

Read more...
Time-sensitive networking
RJ Connect Editor's Choice Fieldbus & Industrial Networking
In this article, we will explore what is driving the rise of time-sensitive networking, how it is reshaping industrial efficiency, the challenges when deploying this technology, and ways to tackle these challenges.

Read more...
Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...
Precision in paper processing
VEGA Controls SA Editor's Choice Level Measurement & Control
Paper manufacturing is a demanding process that relies on consistency, precision and control at every stage. The VEGABAR 82 pressure transmitter is well-suited to these harsh environments.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Editor's Choice Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors is designed to monitor and control disinfectant levels in water treatment processes.

Read more...
A South African legacy in telemetry
Interlynx-SA Editor's Choice Industrial Wireless
Telemetry is becoming a vital component of industrial strategy, allowing companies to harness real-time data to optimise processes and reduce waste. One company leading this technological shift is Interlynx.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved