Motion Control & Drives


Electromagnetic brakes for miniature DC motor applications

June 2022 Motion Control & Drives

Mini motor applications utilise DC motor technology because of compactness, low weight, and reliability. Stopping, slowing or holding the position and load of these motors is crucial for many applications, from controlling robotic joints through to automated window shades. This control is achieved by integrating an electromagnetic brake, accurately specified according to the application requirements and parameters of the DC mini motor. Louis Mongin, BLDC product strategic manager at Portescap, explains the technology behind electromagnetic brakes for DC mini motors.

In miniature DC motor applications, electromagnetic brakes are used to hold, stop or slow down a load. Without a brake, a motor would continue to rotate without control, even after cutting its supply of voltage or current; or it would fail to hold position against a competing power. While alternative torque control devices could be used, electromagnetic brakes can combine precision with a compact, reliable, energy-efficient and cost-effective design.

To hold a DC mini motor in position at a specific stopping point across a variety of industrial and medical applications, the general design includes a fixed field coil that acts as an electromagnet to generate torque to brake or hold the load. The coil’s electromagnetism controls an armature that either engages or disengages with a structure. The design of the brake mechanism features a hollow shaft mounted onto the shaft of the DC motor, which gives compact integration.

Brakes are available in a power-on design, which means that the brake is only engaged when current flows in the field coil. This is acceptable when the brake doesn’t have to hold a high load, or if holding torque isn’t required after power-off. Alternatively, with a power-off brake, the brake remains engaged at all times unless current is flowing in the electromagnet, which creates an inherently safer design for some applications.

Spring-set brakes utilise power-off braking and are used to automatically stop and hold a load in the event of a power failure or emergency stop situation. In this design, braking force is applied through a compression spring, and the brake is usually released by manual control. The advantages include repeated braking cycles from full motor speed with no torque fade, and the designs can be customised in aspects such as voltage rating and dynamic friction material according to the spring force requirement. The disadvantage of a spring brake is that it can present backlash, affecting the precision it can offer for dynamic braking or position holding.

Instead, for applications where dynamic stopping and holding a moving load is required, as well as for high cycle rate stopping, a permanent magnet power-off brake should be used. In this design, brakes are engaged magnetically and disengaged electrically, providing safe load holding in power shut-off. When voltage or current is applied to the brake, the coil becomes an electromagnet and produces magnetic lines of flux counteracting those of the permanent magnet. This action releases the armature, creating an air gap and allowing the load shaft to rotate. Increasing voltage or current also enables braking force to be controlled with precision, as opposed to the spring brake’s on/off functionality.

As the permanent magnet brake design includes no moving parts, the brakes can operate at very high speeds. Unlike spring brakes, they don’t allow backlash, because the design includes a fixed connection between the armature, spring and hub. This allows them to be controlled with precision. As heat is generated during dynamic braking, this means that the brake must be correctly sized to deal with friction, load and torque requirements. Permanent magnet brakes require consistent and specific current, meaning that these brake designs should be carefully considered before using them in conditions that could cause current fluctuations, such as high or changing temperatures.

Thanks to the precision control of a permanent magnet brake, they are well suited to use in robotic arm joints. Their zero-backlash capability means they can precisely hold torque and also provide dynamic stopping. An example of a DC mini motor application that requires safety in holding torque is the control of automated window shades. Providing automatic operation, the power-off brake also allows the motor to hold the shade position when power is removed.

Portescap’s engineers regularly integrate DC mini motor braking solutions into bespoke OEM applications. The team ensures exacting sizing and specification, as well as recommending the most effective technology and features for specific requirements. Design is combined with rapid prototyping and testing to ensure safety and precision, before moving the development to volume production.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Plastics improve machine performance and reliability
igus Motion Control & Drives
Engineered plastics from German polymer manufacturer, igus continue to revolutionise mechanical systems across various industries worldwide, with a pledge to ‘improve what moves’ by replacing moving steel components with polymer equivalents.

Read more...
Integrated solutions power the future of mining
ABB South Africa Motion Control & Drives
ABB has a diverse array of solutions that cater to multiple industry sectors, and especially mining. Mining companies across South Africa are embracing automation and control technologies.

Read more...
Keeping the ball rolling
Bearing Man Group t/a BMG Motion Control & Drives
BMG’s Fluid Technology team has recently completed the design, supply and commissioning of an advanced lubrication system for a main bearing on a ball mill, which has been developed to optimise productivity and minimise maintenance requirements and downtime.

Read more...
Get your bearings right
Bearing Man Group t/a BMG Motion Control & Drives
BMG’s Bearings Division offers a comprehensive range of bearings, which comprise ball, roller, and linear bearings ranging in size from miniature to extremely large units.

Read more...
SEW-EURODRIVE prioritises ecology and economy
SEW-EURODRIVE Motion Control & Drives
Committed to environmental sustainability principles, SEW-EURODRIVE has developed the ECO2 design to offer drives with uncoated aluminium, with no compromise in their performance and durability.

Read more...
A year of innovation and milestones for ISO-Reliability Partners
Motion Control & Drives
For ISO-Reliability Partners 2024 was a transformative year marked by innovation, collaboration and a steadfast commitment to advancing industrial reliability. Guided by CEO, Craig FitzGerald, the company has introduced cutting-edge technologies, expanded its product portfolio and strengthened its reputation as a leader in lubrication, filtration and tribology.

Read more...
The impact of gearless mill drive technology on CO2 emissions
ABB South Africa Motion Control & Drives
ABB has released an in-depth white paper detailing the vital role that gearless grinding technologies can play in driving productivity in mining while simultaneously reducing their carbon footprint.

Read more...
Global geared motors market
Motion Control & Drives
The global geared motors market experienced significant growth from 2021 to 2023, driven by market recovery following the pandemic in 2020, and high backlog levels in 2022.

Read more...
Innovative new products from maxon
DNH Tradeserve t/a DNH Technologies Motion Control & Drives
A series of innovative new products has been launched by maxon. These include a drive with a diameter of just 16 millimetres, a controller that can be easily integrated into even the tightest of spaces, and a robust and reliable robotic actuator.

Read more...
Effective dust control
Motion Control & Drives
BLT WORLD, in conjunction with the global ScrapeTec team, plays an important role throughout Africa by assisting companies, during conveyor handling, to manage dust emission and material spillage effectively.

Read more...