Temperature Measurement


Infrared thermography revolutionises hot-mix asphalt paving

June 2007 Temperature Measurement

Hot-mix asphalt (HMA) surfaces comprise a high percentage of our highways and roads and are typically engineered to last 15 years or more, but many have suffered premature failure due to potholes, cracks, ravelling and other problems. These failures waste millions of taxpayers' rands every year.

A series of research studies have been conducted in the USA to determine the reason for the premature failure of HMA paved roads. The field studies used infrared thermography and site evaluations to determine the results. Study results confirmed that a major cause of early failure stems from temperature differentials in the hot-mix during laydown.

The first link between pre-compacted surface temperature and HMA density was verified in 1996 when studies were done to investigate 'cyclic segregation' or 'end of load segregation'. These studies confirmed that the clumps of crusted material that went through the paving machine without substantial remixing during end dump operations were relatively cooler than the bulk of the material and therefore stiffer and more resistant to compaction. As a result these areas were relatively porous and filled with air voids, less dense, and less resistant to wear and degradation from traffic and the environment than the surrounding matrix. The study concluded that placement of this cooler hot-mix can create areas near or below cessation temperature (79°C), which tend to resist adequate compaction. Even after aggressive rolling, the isolated cool areas have lower densities, and more air voids, than the surrounding material.

Asphalt that is cooler than 79°C is relatively stiff, and resists compaction, which results in a lower density than hotter areas after compaction, and is therefore prone to premature failure. Note the low temperature spots in the thermograph, which is cooler than 67,2°C and correlate with the visibly worn dark spots in the visual photo of the road after about a year of service
Asphalt that is cooler than 79°C is relatively stiff, and resists compaction, which results in a lower density than hotter areas after compaction, and is therefore prone to premature failure. Note the low temperature spots in the thermograph, which is cooler than 67,2°C and correlate with the visibly worn dark spots in the visual photo of the road after about a year of service

In 1998 an infrared thermal imager was used in studies to correlate temperature difference, aggregate segregation and compacted densities. The relatively cooler areas were found to have lower densities than the hotter areas, with an overall air void difference of 1,6 to 7,8%. From this study it was concluded that isolated areas of low density were related to temperature differentials and not to aggregate segregation.

Temperature differential damage occurs when a truck load of HMA exhibiting temperature differentials is dumped into the paver’s hopper. HMA cools along the top and sides of the truck bed. The cool material then falls inward to lay on top of the material over the slat conveyors. When the next truck arrives and dumps into the paver, this cooler material is extruded onto the roadway. This cooler material is placed on the mat in isolated areas and compaction equipment is unable to adequately consolidate these areas of cooler mix.

In 1999 investigations were made using a thermal imager and in-place nuclear density testing. The primary objective of the study was to determine the relationship between temperature differentials within the hot-mix and its final density. As expected, higher differentials resulted when there was no remixing prior to placement of the hot-mix and typically after long haul times. The pivotal finding was that localised air voids typically increased by 2% or more when the temperature differential was 14°C or larger.

A landmark quantitative finding of a 2000 study was the determination of a critical thermal differential threshold of 13,9°C within the hot-mix as it was extruded from the paver. The cooler areas or hot-mix with a higher differential of 13,9°C exhibited significantly lower densities after compaction than the hotter matrix.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Temperature monitoring in dairies
ifm - South Africa Temperature Measurement
Milk is a natural product whose processing requires precise temperature settings. The Berchtesgadener Land dairy uses innovative temperature sensors from ifm in key process areas.

Read more...
Measuring temperature, relative humidity and dew point temperature
Senseca Temperature Measurement
Senseca’s range of passive or active transmitters measures temperature, relative humidity, and dew point temperature.

Read more...
High definition thermal imagers on steam crackers
Temperature Measurement
AMETEK Land’s high-definition thermal imaging system, the NIR-B-2K, has been selected by one the world’s largest ethylene producers for installation on multiple liquid-feed cracker furnaces.

Read more...
Three ways to conduct thermal inspections
Comtest Temperature Measurement
There’s no universal solution for all infrared inspections with a Fluke thermal camera, also known as a thermal imager. You need to match your method to the type of equipment you’re inspecting and the level of detail you require.

Read more...
New temperature relative humidity and barometric pressure transmitter
Senseca Temperature Measurement
ENVIROsense, a new environmental temperature, relative humidity, relative humidity and, optionally, barometric pressure transmitter has been launched by Senseca, a leader in the design and manufacture of monitoring and measurement instrumentation.

Read more...
The role of alarm annunciators in temperature monitoring
Omniflex Remote Monitoring Specialists Temperature Measurement
Director at alarm annunciator specialist, Omniflex explores the importance of alarm annunciators in temperature monitoring applications, drawing on examples from different industrial settings.

Read more...
Increased safety and control in steel plants
Temperature Measurement
AMETEK Land has helped a major metals industry plant designer to enhance safety, control, and efficiency in steel plants.

Read more...
Industrial water heating solutions
Temperature Measurement
Electrolux (Kwikot) Industrial’s massive water heating tanks are making a name for themselves beyond local borders.

Read more...
Optimising steam management for boiler efficiency
Endress+Hauser South Africa Temperature Measurement
Endress+Hauser understands the daily challenges and demands placed on energy and utility managers across the spectrum of steam generation, distribution and consumption activities. Its global team is committed to working with its partners to overcome these complexities, and particularly those that aim for a safe, economic and sustainable sitsce of steam energy production and delivery.

Read more...
Temperature to IO-Link module
ifm - South Africa Temperature Measurement
IO-Link has become established as an intelligent interface for integrating smart sensors and devices in various industries. With the new ifm IO-Link measuring modules, up to four temperature probes can be connected to an IO-Link master port in two-, three- or four-wire configuration.

Read more...