Electrical Power & Protection


Can IR windows be considered ‘arc resistant’?

March 2017 Electrical Power & Protection

It is easy for an end-user to be misinformed about the specifications of an IR window because there is often confusion in the market about parameters such as arc resistance, IP ratings and environmental stability, in respect of these particular devices. This is particularly true for IR windows manufactured from a crystal substrate, since these are often perceived as being stronger than steel.

Completing an arc containment test on switchgear is required to confirm that the design meets the IEEE and IEC standards, and, if IR windows were installed in the piece of equipment under test, then, if successful, an IR window manufacturer could claim that the window met the IEEE or IEC arc containment requirements for that particular piece of equipment for that particular test. However, a claim of all-encompassing ‘arc resistance’ for that particular IR window would be misleading.

What do the regulations say?

Whilst there are regulations from UL and CSA on IR windows fitted in electrical enclosures up to 600 V, there are no specific regulations from IEEE or IEC. There are however IEEE regulations on ‘visual viewing panes’, which have been in place since the inception of these standards. Like all standards, these have evolved with suppliers’ ability to provide superior, less expensive materials and manufacturing options.

A common theme for all visual viewing pane testing is impact and load testing. This requires the viewing pane to meet a minimum impact and load test without cracking, shattering or dislodging from its housing.

The regulation requires visual viewing panes to withstand impact and load per IEEE C37.20.2 Section a.3.6. Unlike UL, this IEEE standard does not differentiate between the types of material, or give exemptions to crystal infrared windows. Instead it clearly specifies that any transparent material covering an observation opening and forming a part of the enclosure should be reliably secured in such a manner that it cannot be readily displaced in service and not shatter, crack, or become dislodged when both sides of the viewing panes in turn are subjected to impact and load.

This testing method has been in place for many years and is the accepted method for visual viewing panes, so why not use the same test for IR windows? Well, the fact is that the fluoride-based crystal IR windows cannot pass any form of impact, so the IR window manufacturers lean more towards the UL regulation UL1558 for impact and load testing.

Two different test criteria

UL 1558 is the impact and load standard for visual viewing and IR window testing. This test is identical to the IEEE C37.20.2 Section a.3.6 test, except they doubled the load and impact test.

On the face of it, this sounds perfect. But herein lies the rub, unlike the IEEE test, UL1558 has two different test criteria: one with covers fitted and closed on the IR window, and one for covers opened or removed.

When provided with a cover, results are considered to be acceptable if the assembly prevents insertion of a 13 mm diameter rod at the conclusion of the test. When no cover is provided, the results are considered acceptable if the view pane does not shatter, crack or become dislodged (as with the IEEE test).

Testing IR viewing windows with the metal cover in place is in conflict with the intent of the standard, since the crystal lens will shatter during the test. This renders the window ‘electrically unsafe’ because it fails the IP20 requirement that stipulates the largest allowable hole size in the cabinet is 13 mm. However, the window passes the test due to the fact that a steel rod of that diameter cannot be passed through the metal or plastic cover! If this standard is to be used to certify an IR window, then it is important to insist that the UL1558 test be completed with the covers open, and then meets the minimum test requirement by not shattering, cracking or dislodging, during or after the test.

When it comes to IR windows, the user needs to be more concerned with the mechanical stability of the windows, as a component within the switchgear assembly, and that it meets the minimum requirements for impact and load testing, rather than being misled that the window is somehow arc resistant.

For more information contact R&C Instrumentation, 086 111 4217, [email protected], www.randci.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compact, high density power protection system for AI, data centre and large-scale electrical workloads
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new Galaxy VXL – a highly efficient, compact, modular, scalable and redundant 500-1250 kW (400 V) 3-phase uninterruptible power supply (UPS), complete with enhanced cybersecurity, software and safety features.

Read more...
Taking the pain out of panel building
Omron Electronics Electrical Power & Protection
Panel building stands as a cornerstone of industrial automation, shaping the efficiency and reliability of automated systems across different and diverse industries, from manufacturing to infrastructure. Omron leverages over 80 years of experience to furnish OEMs and builders with cutting-edge control panel solutions.

Read more...
Powerless is not an option
Electrical Power & Protection
When the power goes out it is important for commercial and tertiary facilities to be able to keep essential electrical equipment running. UPS systems are critical for transitioning and emergency backup power.

Read more...
High-performance surface inspection systems for battery production
Electrical Power & Protection
As battery manufacturers increase their focus on yield optimisation to meet growing demand, AMETEK Surface Vision is highlighting the essential role of processes to improve quality and reduce defects.

Read more...
Securing the power supply
Electrical Power & Protection
Grid management systems are the linchpin of modern transmission and distribution networks. To understand the intricacies of grid management, it is necessary to unpack its core components: scada systems, energy management systems, outage management systems and wide area management systems.

Read more...
Powering sustainable mining operations in Africa
Electrical Power & Protection
Africa’s mining sector is at a crossroads and, as the industry grapples with mounting pressure to drive operational efficiency within the boundaries of sustainability, natural gas is emerging as a compelling solution.

Read more...
Multimeters: the perfect entry-level choice
Comtest Electrical Power & Protection
Experience the precision, durability and safety of professional-grade test tools with the entry level Fluke 15B+ and 17B+ digital multimeters.

Read more...
ABB technology powers three substations in Uganda
ABB South Africa Electrical Power & Protection
ABB delivered solutions for three substations run by Uganda’s leading utility, Umeme Limited, which manages and operates the state-owned leased electricity distribution network assets.

Read more...
A snapshot of South Africa’s electricity market over the next six years
Electrical Power & Protection
At the beginning of the year, the Electricity Regulation Amendment Act came into effect, promising to facilitate “an open market platform that allows for competitive electricity trading.” This article focuses on providing a roadmap for the competitive, multi-market electricity trading platform that the ERAA intends to establish.

Read more...
Empowering businesses to prosper as prosumers
Schneider Electric South Africa Electrical Power & Protection
As more businesses adopt renewable energy solutions like rooftop solar and energy storage they become prosumers – both consumers and producers of energy – a trend that presents organisations with a significant opportunity to engage in the bi-directional flow of energy through distributed energy resources.

Read more...